Subrecursion and lambda representation over free algebras

As a contribution to ongoing research on computing over general algebraic structures, we consider subrecurrence over free algebras. Since the natural sub-recursive classification of functions by recurrence-nesting depth fails to separate polynomial from exponential numeric functions, we define a subrecursive hierarchy {T n }n which does, based on nesting depth of a newly defined tiered recurrence.

[1]  Daniel Leivant,et al.  Stratified polymorphism , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[2]  Richard Statman,et al.  The Typed lambda-Calculus is not Elementary Recursive , 1979, Theor. Comput. Sci..

[3]  A. Grzegorczyk Some classes of recursive functions , 1964 .

[4]  Marek Zaionc A Characterisation of Lambda Definable Tree Operations , 1990, Inf. Comput..

[5]  Daniel Leivant Reasoning about functional programs and complexity classes associated with type disciplines , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[6]  H. Schwichtenberg,et al.  Rekursionszahlen und die Grzegorczyk-Hierarchie , 1969 .

[7]  Marek Zaionc,et al.  Word Operation Definable in the Typed lambda-Calculus , 1987, Theor. Comput. Sci..

[8]  C. Parsons Hierarchies of Primitive Recursive Functions , 1968 .

[9]  Helmut Schwichtenberg,et al.  Definierbare Funktionen imλ-Kalkül mit Typen , 1975, Archive for Mathematical Logic.

[10]  Corrado Böhm,et al.  Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..

[11]  P. Axt Iteration of Primitive Recursion , 1965 .