Probability and Utility — Dual Concepts in Decision Theory

In evaluating a risky prospect a decision maker will usually take into account (a) all the possible gains and losses (i.e. the consequences), that might occur if the prospect were adopted, (b) the corresponding probabilities of the occurrences of these gains or losses.

[1]  C. Villegas On Qualitative Probability $/sigma$-Algebras , 1964 .

[2]  Paul A. Samuelson,et al.  The Numerical Representation of Ordered Classifications and the Concept of Utility , 1938 .

[3]  Johann Pfanzagl,et al.  Theory of measurement , 1970 .

[4]  E. Jessen Geschichte und Zukunft , 1975 .

[5]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[6]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[7]  Peter C. Fishburn,et al.  Decision And Value Theory , 1965 .

[8]  P. Lazarsfeld,et al.  Mathematical Thinking in the Social Sciences. , 1955 .

[9]  Hans Schneeweiß Note on two dominance principles in decision theory , 1968, Unternehmensforschung.

[10]  K. Arrow Essays in the theory of risk-bearing , 1958 .

[11]  Wilhelm Krelle,et al.  Präferenz- und Entscheidungstheorie , 1968 .

[12]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[13]  J. Pfanzagl Chapter 18. Subjective Probability Derived from the Morgenstern-von Neumann Utility Concept , 1967 .

[14]  Günter Menges,et al.  On subjective probability and related problems , 1970 .

[15]  H. Schneeweiß,et al.  Entscheidungskriterien bei Risiko , 1967 .

[16]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[17]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[18]  B. O. Koopman The bases of probability , 1940 .

[19]  F. Alt Über die Meßbarkeit des Nutzens , 1936 .