Hellinger Versus Kullback–Leibler Multivariable Spectrum Approximation

In this paper, we study a matricial version of a generalized moment problem with degree constraint. We introduce a new metric on multivariable spectral densities induced by the family of their spectral factors, which, in the scalar case, reduces to the Hellinger distance. We solve the corresponding constrained optimization problem via duality theory. A highly nontrivial existence theorem for the dual problem is established in the Byrnes-Lindquist spirit. A matricial Newton-type algorithm is finally provided for the numerical solution of the dual problem. Simulation indicates that the algorithm performs effectively and reliably.

[1]  C. Byrnes,et al.  Generalized interpolation in $H^\infty$ with a complexity constraint , 2004 .

[2]  Hans Föllmer,et al.  Random fields and diffusion processes , 1988 .

[3]  Anders Lindquist,et al.  From Finite Covariance Windows to Modeling Filters: A Convex Optimization Approach , 2001, SIAM Rev..

[4]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[5]  Anders Lindquist,et al.  Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach , 2003, IEEE Trans. Autom. Control..

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  C. Byrnes,et al.  The Generalized Moment Problem with Complexity Constraint , 2006 .

[8]  D. C. Youla,et al.  Interpolation with positive real functions , 1967 .

[9]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[10]  M. Pavon,et al.  On entropy production for controlled Markovian evolution , 2006, math-ph/0702024.

[11]  Anders Lindquist,et al.  Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..

[12]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  S. Pinzoni,et al.  On the relation between additive and multiplicative decompositions of rational matrix functions , 2003 .

[15]  Tryphon T. Georgiou,et al.  Kullback-Leibler approximation of spectral density functions , 2003, IEEE Trans. Inf. Theory.

[16]  I. Csiszár Maxent, Mathematics, and Information Theory , 1996 .

[17]  Ryozo Nagamune A robust solver using a continuation method for Nevanlinna-Pick interpolation with degree constraint , 2003, IEEE Trans. Autom. Control..

[18]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[19]  Michele Pavon,et al.  On the Georgiou-Lindquist approach to constrained Kullback-Leibler approximation of spectral densities , 2006, IEEE Transactions on Automatic Control.

[20]  Tryphon T. Georgiou An Intrinsic Metric for Power Spectral Density Functions , 2007, IEEE Signal Processing Letters.

[21]  H. Kuo Gaussian Measures in Banach Spaces , 1975 .

[22]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..

[23]  Tryphon T. Georgiou,et al.  Distances and Riemannian Metrics for Spectral Density Functions , 2007, IEEE Transactions on Signal Processing.

[24]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[25]  Tryphon T. Georgiou,et al.  Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization , 2002, IEEE Trans. Autom. Control..

[26]  Tryphon T. Georgiou Relative entropy and the multivariable multidimensional moment problem , 2006, IEEE Transactions on Information Theory.

[27]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[28]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[29]  Tryphon T. Georgiou,et al.  Solution of the general moment problem via a one-parameter imbedding , 2005, IEEE Transactions on Automatic Control.

[30]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[31]  E. Carlen,et al.  Entropy production by block variable summation and central limit theorems , 1991 .

[32]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[33]  P. Kosmol,et al.  Optimierung und Approximation , 2010 .

[34]  Michele Pavon,et al.  A Globally Convergent Matricial Algorithm for Multivariate Spectral Estimation , 2008, IEEE Transactions on Automatic Control.

[35]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[36]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[37]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[38]  Tryphon T. Georgiou,et al.  Remarks on control design with degree constraint , 2006, IEEE Transactions on Automatic Control.

[39]  A. Barron ENTROPY AND THE CENTRAL LIMIT THEOREM , 1986 .

[40]  S. Luo,et al.  Informational distance on quantum-state space , 2004 .

[41]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[42]  Tryphon T. Georgiou,et al.  Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques , 2005, IEEE Transactions on Biomedical Engineering.

[43]  Tryphon T. Georgiou,et al.  The structure of state covariances and its relation to the power spectrum of the input , 2002, IEEE Trans. Autom. Control..

[44]  P. Enqvist A homotopy approach to rational covariance extension with degree constraint , 2001 .

[45]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .