Microstructural characterization and phase analysis of new pyrochlore-type mixed metal oxides RESmTi2O7 (RE = Gd, Er) by X-ray powder diffraction using Rietveld refinement method and spectroscopic studies

[1]  H. Beltrán-Mir,et al.  EFFECT OF THE OXIDATION STATES ON THE ELECTRICAL PROPERTIES OF Fe-DOPED Pr2Zr2O7 PYROCHLORE , 2021, Journal of Materials Research and Technology.

[2]  Xin Tang,et al.  First principle calculations of structural and electronic properties of pyrochlore Y2Ru2O7 and Y1-xMxRu2O7−δ (M=Mg, Ca, Sr, Ba, Zn, Cd and Hg) , 2021 .

[3]  V. Talanov,et al.  Structural Diversity of Ordered Pyrochlores , 2021 .

[4]  A. Rydosz,et al.  Pyrochlore-fluorite dual-phase high-entropy ceramic foams with extremely low thermal conductivity from particle-stabilized suspension , 2021 .

[5]  Tingting Chen,et al.  Thermoelectric performance of Dy/Y co-doped SrTiO3 ceramic composites with submicron A2Ti2O7 (A = Dy, Y) pyrochlore , 2021 .

[6]  Wenjie Zhang,et al.  Role of hydrochloric acid treated HZSM-5 zeolite in Sm2Ti2O7/nHZSM-5 composite for photocatalytic degradation of ofloxacin , 2020 .

[7]  H. Moriwake,et al.  First-Principles Study on the Stability of Weberite-Type, Pyrochlore, and Defect-Fluorite Structures of A23+B24+O7 (A = Lu3+–La3+, B = Zr4+, Hf4+, Sn4+, and Ti4+) , 2020 .

[8]  Yihong Xiao,et al.  A2B2O7 (A= La, Pr, Nd, Sm, Gd and B Ti, Zr, Sn) ceramics for mild-temperature NO2 sensing and reduction , 2020 .

[9]  M. Diviš,et al.  Characterization and Magnetic Properties of Heavy Rare-Earth A2Ir2O7 Pyrochlore Iridates, the Case of Tm2Ir2O7 , 2020 .

[10]  Xianglan Xu,et al.  A2B2O7 pyrochlore compounds: A category of potential materials for clean energy and environment protection catalysis , 2020 .

[11]  Z. Tang,et al.  Uranium-Incorporated Pyrochlore La2(UxMgxZr1-2x)2O7 Nuclear Waste Form: Structure and Phase Stability. , 2020, Inorganic chemistry.

[12]  Z. Song,et al.  Tolerance factor, phase stability and order–disorder of the pyrochlore structure , 2020 .

[13]  J. Khalil-Allafi,et al.  Microstructural characterization and quantitative phase analysis of Ni-rich NiTi after stress assisted aging for long times using the Rietveld method , 2020, Materials Chemistry and Physics.

[14]  B. J. Kim,et al.  Phonon anomalies in pyrochlore iridates studied by Raman spectroscopy , 2019, Physical review B.

[15]  J. Kolis,et al.  Hydrothermal Crystal Growth of Rare Earth Tin Cubic Pyrochlores, RE2Sn2O7 (RE = La–Lu): Site Ordered, Low Defect Single Crystals , 2019, Crystal Growth & Design.

[16]  Hui Li,et al.  Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis , 2019, Applied Catalysis B: Environmental.

[17]  H. Dai,et al.  Effect of rare earth element (Ln = La, Pr, Sm, and Y) on physicochemical properties of the Ni/Ln2Ti2O7 catalysts for the steam reforming of methane , 2019, Molecular Catalysis.

[18]  F. d’Acapito,et al.  Local Disorder in Ln2Ti2O7 (Ln = Gd, Tb, Dy) Pyrochlores , 2019, JETP Letters.

[19]  J. Gaudet,et al.  Quantum Spin Ice Dynamics in the Dipole-Octupole Pyrochlore Magnet Ce_{2}Zr_{2}O_{7}. , 2019, Physical review letters.

[20]  H. Kumar,et al.  Spin-phonon coupling in hole-doped pyrochlore iridates Y2Ir1-xRux2O7: A Raman scattering study , 2019, Journal of Magnetism and Magnetic Materials.

[21]  B. Uberuaga,et al.  Distortion-stabilized ordered structures in A2BB’O7 mixed pyrochlores , 2019, npj Computational Materials.

[22]  Hong Yang,et al.  A Porous Pyrochlore Y 2 [Ru 1.6 Y 0.4 ]O 7– δ Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media , 2018, Angewandte Chemie.

[23]  Sushil Kumar,et al.  Crystal structure, morphology and optical behaviour of sol-gel derived pyrochlore rare earth titanates RE2Ti2O7 (RE=Dy, Sm) , 2018, Journal of Alloys and Compounds.

[24]  M. Ferid,et al.  Pyrochlore structure and spectroscopic studies of titanate ceramics. A comparative investigation on SmDyTi2O7 and YDyTi2O7 solid solutions. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[25]  W. Pan,et al.  A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7 , 2018 .

[26]  H. C. Gupta,et al.  Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu) , 2018 .

[27]  M. Stone,et al.  Crystal field excitations from Yb3+ ions at defective sites in highly stuffed Yb2Ti2O7 , 2017, Physical Review B.

[28]  R. Ewing,et al.  High-pressure behavior of A2B2O7 pyrochlore (A=Eu, Dy; B=Ti, Zr) , 2017 .

[29]  G. Moskal,et al.  Synthesis, Characterization and Thermal Diffusivity of Holmium and Praseodymium Zirconates , 2016 .

[30]  G. Mukherjee,et al.  FT-IR and Raman vibrational spectroscopic studies of R2FeSbO7 (R3+ = Y, Dy, Gd, Bi) pyrochlores , 2016 .

[31]  Fuxiang Zhang,et al.  Blue and red up-conversion light emission in TM-doped A2B2O7 oxides , 2016 .

[32]  M. Ferid,et al.  Relationship between the structural characteristics and photoluminescent properties of LnEuTi2O7 (Ln=Gd and Y) pyrochlores , 2016 .

[33]  Gang Chen,et al.  Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: A review , 2015 .

[34]  Jimmy C. Yu,et al.  Lanthanide stannate pyrochlores Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = Nd, Sm, Eu, Gd, Er, Yb) nanocrystals: Synthesis, characterization, and photocatalytic properties , 2014 .

[35]  M. Ferid,et al.  Structural, FT-IR, XRD and Raman scattering of new rare-earth-titanate pyrochlore-type oxides LnEuTi2O7 (Ln = Gd, Dy) , 2013 .

[36]  A. Shlyakhtina,et al.  New solid electrolytes of the pyrochlore family , 2012, Russian Journal of Electrochemistry.

[37]  W. J. Weber,et al.  Review of A2B2O7 pyrochlore response to irradiation and pressure , 2010 .

[38]  A. Sayede,et al.  Density functional calculations of the structural, electronic, and ferroelectric properties of high-k titanate Re2Ti2O7 (Re=La and Nd) , 2010 .

[39]  H. C. Gupta,et al.  A lattice dynamical investigation of the Raman and the infrared frequencies of the Dy2Ti2O7 pyrochlore spin ice compound , 2009 .

[40]  Hao Wang,et al.  Synthesis and structural characterization of a series of lanthanide stannate pyrochlores , 2008 .

[41]  Xin Wang,et al.  Preparation and characterization of Ln2Zr2O7 (Ln = La and Nd) nanocrystals and their photocatalytic properties , 2008 .

[42]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[43]  D. Tanner,et al.  Raman study of the phonon modes in bismuth pyrochlores , 2008 .

[44]  M. Lü,et al.  Combustion synthesis and photoluminescence of Eu3+, Dy3+-doped La2Zr2O7 nanocrystals , 2006 .

[45]  B. Toby R factors in Rietveld analysis: How good is good enough? , 2006, Powder Diffraction.

[46]  S. Saxena,et al.  Structural changes and pressure-induced amorphization in rare earth titanates Re2Ti2O7 (RE: Gd, Sm) with pyrochlore structure , 2005 .

[47]  S. Conradson,et al.  Spectroscopic Investigations of the Structural Phase Transition in Gd2(Ti1-yZry)2O7 Pyrochlores , 2002 .

[48]  H. C. Gupta,et al.  Lattice dynamic investigation of the zone center wavenumbers of the cubic A2Ti2O7 pyrochlores , 2001 .

[49]  H. Wenk,et al.  MAUD: a friendly Java program for material analysis using diffraction , 1999 .

[50]  Brett A. Hunter,et al.  Structural and Bonding Trends in Tin Pyrochlore Oxides , 1997 .

[51]  A. Sleight,et al.  Chapter 107 Rare earth pyrochlores , 1993 .

[52]  Y. Q. Jia,et al.  CRYSTAL RADII AND EFFECTIVE IONIC-RADII OF THE RARE-EARTH IONS , 1991 .

[53]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .