Rotational transport on a sphere: Local node refinement with radial basis functions
暂无分享,去创建一个
[1] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[2] Robert Schaback,et al. Interpolation by basis functions of different scales and shapes , 2004 .
[3] Simon Hubbert,et al. Lp-error estimates for radial basis function interpolation on the sphere , 2004, J. Approx. Theory.
[4] C. Jablonowski,et al. Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .
[5] J. Wertz,et al. The role of the multiquadric shape parameters in solving elliptic partial differential equations , 2006, Comput. Math. Appl..
[6] Bengt Fornberg,et al. A Stable Algorithm for Flat Radial Basis Functions on a Sphere , 2007, SIAM J. Sci. Comput..
[7] R. E. Carlson,et al. Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .
[8] Ian H. Sloan,et al. How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..
[9] Bengt Fornberg,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2004 .
[10] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[11] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[12] I. J. Schoenberg. Positive definite functions on spheres , 1942 .
[13] Gregory E. Fasshauer,et al. On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.
[14] A. Kuijlaars. Ward Cheney and Will Light, A Course in Approximation Theory , 2001 .
[15] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[16] Bengt Fornberg,et al. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..
[17] Kurt Jetter,et al. Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..
[18] Natasha Flyer,et al. Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..
[19] Shian-Jiann Lin,et al. Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..
[20] Natasha Flyer,et al. A radial basis function method for the shallow water equations on a sphere , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[21] M. J. D. Powell,et al. Radial basis function methods for interpolation to functions of many variables , 2001, HERCMA.
[22] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .
[23] Stephen J. Thomas,et al. A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .
[24] Jungho Yoon,et al. Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..
[25] Ward Cheney,et al. A course in approximation theory , 1999 .
[26] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[27] Vladimir Cherkassky,et al. Learning from Data: Concepts, Theory, and Methods , 1998 .
[28] Scott A. Sarra,et al. A random variable shape parameter strategy for radial basis function approximation methods , 2009 .
[29] Bengt Fornberg,et al. Locality properties of radial basis function expansion coefficients for equispaced interpolation , 2007 .
[30] Armin Iske,et al. Multiresolution Methods in Scattered Data Modelling , 2004, Lecture Notes in Computational Science and Engineering.
[31] R. Wyatt,et al. Radial basis function interpolation in the quantum trajectory method: optimization of the multi-quadric shape parameter , 2003 .
[32] Tobin A. Driscoll,et al. Adaptive residual subsampling methods for radial basis function interpolation and collocation problems , 2007, Comput. Math. Appl..
[33] W. Madych,et al. Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .