A mm-Wave Switched-Capacitor RFDAC

This article proposes an interleaving switched-capacitor RF digital-to-analog converter (RFDAC) using an edge combiner within the output stage to implicitly triple its effective clock carrier frequency and enable the mm-wave (mmW) operation. Tripling in the output stage allows for increased energy efficiency, which is further improved by employing an edge-combining-based frequency-tripling delay-locked loop (DLL) in the clock generation network. The clock tripling is performed in each slice of the switched-capacitor PA (SCPA), which allows yet another 3<inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> frequency reduction for the global clock distribution. Finally, a new layout structure accounts for transmission-line (TL) effects, due to the large physical size of the passive capacitor array. Implemented in 22-nm FD-SOI, the prototype achieves <inline-formula> <tex-math notation="LaTeX">$ {{P_{\mathrm{ out}}}}>21$ </tex-math></inline-formula> dBm, drain efficiency >36%, and system efficiency >22% while operating in the <italic>Ka</italic>-band at 28 GHz. Modulation at 2.4 Gb/s results in 3.3% EVM and 30.8-dBc adjacent channel leakage ratio (ACLR).

[1]  Jinho Ko,et al.  A Single-Supply Single-Core Inverse Class-D Digital Power Amplifier with Enhanced Power Back-Off Efficiency Adopting Output Power Scaling Technique , 2021, 2021 Symposium on VLSI Circuits.

[2]  Jeffrey S. Walling,et al.  An Active-Under-Coil RFDAC With Analog Linear Interpolation in 28-nm CMOS , 2021, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Hongtao Xu,et al.  A Quadrature Digital Power Amplifier With Hybrid Doherty and Impedance Boosting for Complex Domain Power Back-Off Efficiency Enhancement , 2021, IEEE Journal of Solid-State Circuits.

[4]  Aoyang Zhang,et al.  26.6 A 5-to-6GHz Current-Mode Subharmonic Switching Digital Power Amplifier for Enhancing Power Back-Off Efficiency , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[5]  Hao Min,et al.  A Broadband Switched-Transformer Digital Power Amplifier for Deep Back-Off Efficiency Enhancement , 2020, IEEE Journal of Solid-State Circuits.

[6]  J. Walling,et al.  Leveraging Programmable Capacitor Arrays for Frequency-Tunable Digital Power Amplifiers , 2020, IEEE Transactions on Microwave Theory and Techniques.

[7]  James F. Buckwalter,et al.  A 30-GHz CMOS SOI Outphasing Power Amplifier With Current Mode Combining for High Backoff Efficiency and Constant Envelope Operation , 2020, IEEE Journal of Solid-State Circuits.

[8]  Fei Wang,et al.  24.1 A 24-to-30GHz Watt-Level Broadband Linear Doherty Power Amplifier with Multi-Primary Distributed-Active-Transformer Power-Combining Supporting 5G NR FR2 64-QAM with >19dBm Average Pout and >19% Average PAE , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[9]  Sensen Li,et al.  24.3 A 28GHz Current-Mode Inverse-Outphasing Transmitter Achieving 40%/31% PA Efficiency at Psat/6dB PBO and Supporting 15Gbit/s 64-QAM for 5G Communication , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[10]  Mike Shuo-Wei Chen,et al.  A Watt-Level Phase-Interleaved Multi-Subharmonic Switching Digital Power Amplifier , 2019, IEEE Journal of Solid-State Circuits.

[11]  Y. Palaskas,et al.  A Cellular Multiband DTC-Based Digital Polar Transmitter With −153 dBc/Hz Noise in 14-nm FinFET , 2019, IEEE Solid-State Circuits Letters.

[12]  Hua Wang,et al.  A 28-GHz Flip-Chip Packaged Chireix Transmitter With On-Antenna Outphasing Active Load Modulation , 2019, IEEE Journal of Solid-State Circuits.

[13]  Fei Wang,et al.  4.8 A Highly Linear Super-Resolution Mixed-Signal Doherty Power Amplifier for High-Efficiency mm-Wave 5G Multi-Gb/s Communications , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[14]  Wen Yuan,et al.  4.3 A Multiphase Interpolating Digital Power Amplifier for TX Beamforming in 65nm CMOS , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[15]  Jeffrey S. Walling,et al.  Corrections to “Split-Array, C-2C Switched-Capacitor Power Amplifiers” , 2018, IEEE Journal of Solid-State Circuits.

[16]  Hua Wang,et al.  A continuous-mode harmonically tuned 19-to-29.5GHz ultra-linear PA supporting 18Gb/s at 18.4% modulation PAE and 43.5% peak PAE , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[17]  Sorin P. Voinigescu,et al.  Ultra-Broadband I/Q RF-DAC Transmitters , 2017, IEEE Transactions on Microwave Theory and Techniques.

[18]  Voravit Vorapipat,et al.  A Class-G Voltage-Mode Doherty Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[19]  Kaushik Dasgupta,et al.  A 25 Gb/s 60 GHz digital power amplifier in 28nm CMOS , 2017, ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference.

[20]  Elad Alon,et al.  A 65nm CMOS I/Q RF power DAC with 24–42dB 3rd harmonic cancellation and up to 18dB mixed-signal filtering , 2017, 2017 Symposium on VLSI Circuits.

[21]  Jeffrey S. Walling,et al.  A Multiphase Switched Capacitor Power Amplifier , 2017, IEEE Journal of Solid-State Circuits.

[22]  Hyung Seok Kim,et al.  13.6 A 2.4GHz WLAN digital polar transmitter with synthesized digital-to-time converter in 14nm trigate/FinFET technology for IoT and wearable applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[23]  Fei Wang,et al.  2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[24]  Sherif Shakib,et al.  2.7 A wideband 28GHz power amplifier supporting 8×100MHz carrier aggregation for 5G in 40nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[25]  Harald Pretl,et al.  13.2 A digital multimode polar transmitter supporting 40MHz LTE Carrier Aggregation in 28nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[26]  Chunshu Li,et al.  Digitally Modulated CMOS Polar Transmitters for Highly-Efficient mm-Wave Wireless Communication , 2016, IEEE Journal of Solid-State Circuits.

[27]  Jeffrey S. Walling,et al.  A Quadrature Switched Capacitor Power Amplifier , 2016, IEEE Journal of Solid-State Circuits.

[28]  Robert Bogdan Staszewski,et al.  A wideband 60 GHz class-E/F2 power amplifier in 40nm CMOS , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[29]  S. M. Alavi,et al.  All-Digital I/Q RF-DAC , 2014 .

[30]  Sorin P. Voinigescu,et al.  A 19 dBm, 15 Gbaud, 9 bit SOI CMOS Power-DAC Cell for High-Order QAM W-Band Transmitters , 2014, IEEE Journal of Solid-State Circuits.

[31]  Robert Bogdan Staszewski,et al.  All-Digital RF $I/Q$ Modulator , 2012 .

[32]  Marian Verhelst,et al.  A 20dBm 2.4GHz digital outphasing transmitter for WLAN application in 32nm CMOS , 2012, 2012 IEEE International Solid-State Circuits Conference.

[33]  Q. J. Gu,et al.  Two-Way Current-Combining $W$-Band Power Amplifier in 65-nm CMOS , 2012, IEEE Transactions on Microwave Theory and Techniques.

[34]  Jeffrey S. Walling,et al.  A Switched-Capacitor RF Power Amplifier , 2011, IEEE Journal of Solid-State Circuits.

[35]  O. Degani,et al.  A Class-E PA With Pulse-Width and Pulse-Position Modulation in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[36]  S.L.J. Gierkink,et al.  Low-Spur, Low-Phase-Noise Clock Multiplier Based on a Combination of PLL and Recirculating DLL With Dual-Pulse Ring Oscillator and Self-Correcting Charge Pump , 2008, IEEE Journal of Solid-State Circuits.

[37]  M. Spong,et al.  On Synchronization of Kuramoto Oscillators , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[38]  R.B. Staszewski,et al.  A digital-to-RF-amplitude converter for GSM/GPRS/EDGE in 90-nm digital CMOS , 2005, 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium - Digest of Papers.

[39]  O. Lee,et al.  A Highly Efficient and Linear mm-Wave CMOS Power Amplifier Using a Compact Symmetrical Parallel–Parallel Power Combiner With IMD3 Cancellation for 5G Applications , 2021, IEEE Access.