Model checking for multi-valued computation tree logics

A multi-valued version of CTL* (mv-CTL*), where both the propositions and the accessibility relation are multi-valued taking values in a finite quasi-Boolean algebra, is defined. A translation from mv-CTL* model checking to CTL* model checking is investigated. First, the case where the elements of quasi-Boolean algebras are totally ordered is considered. Secondly, it is shown how to design a translation algorithm for the two most commonly applied quasi-Boolean algebras. This construction suggests the way one can deal with more complex quasi-Boolean algebras if necessary.

[1]  A. Prasad Sistla,et al.  Automatic verification of finite state concurrent system using temporal logic specifications: a practical approach , 1983, POPL '83.

[2]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[3]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[4]  A. P. Sistla,et al.  Automatic verification of finite-state concurrent systems using temporal logic specifications , 1986, TOPL.

[5]  Antti Valmari,et al.  Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.

[6]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[7]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[8]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[9]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[10]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Branching-Time Model Checking (Extended Abstract) , 1994, CAV.

[11]  Hergen Pargmann,et al.  Model Checking Using Adaptive State and Data Abstraction , 1994, CAV.

[12]  R. Bryant Binary decision diagrams and beyond: enabling technologies for formal verification , 1995, Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[13]  S. Hazelhurst,et al.  Compositional Model Checking of Partially Ordered State Spaces , 1996 .

[14]  A. Prasad Sistla,et al.  Symmetry and model checking , 1996, Formal Methods Syst. Des..

[15]  Doron A. Peled Partial order reduction: Linear and branching temporal logics and process algebras , 1996, Partial Order Methods in Verification.

[16]  Masahiro Fujita,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, DAC '99.

[17]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[18]  Patrice Godefroid,et al.  Model Checking Partial State Spaces with 3-Valued Temporal Logics , 1999, CAV.

[19]  Patrice Godefroid,et al.  Generalized Model Checking: Reasoning about Partial State Spaces , 2000, CONCUR.

[20]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[21]  Wojciech Penczek,et al.  Improving Partial Order Reductions for Universal Branching Time Properties , 2000, Fundam. Informaticae.

[22]  Marsha Chechik,et al.  Efficient Multiple-Valued Model-Checking Using Lattice Representations , 2001, CONCUR.

[23]  Marsha Chechik,et al.  Implementing a Multi-valued Symbolic Model Checker , 2001, TACAS.

[24]  Marsha Chechik,et al.  Model-checking infinite state-space systems with fine-grained abstractions using SPIN , 2001, SPIN '01.

[25]  Marsha Chechik,et al.  Model-Checking over Multi-valued Logics , 2001, FME.

[26]  Marsha Chechik,et al.  A framework for multi-valued reasoning over inconsistent viewpoints , 2001, Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001.