Axiomatizations for Propositional and Modal Team Logic

A framework is developed that extends Hilbert-style proof systems for propositional and modal logics to comprehend their team-based counterparts. The method is applied to classical propositional logic and the modal logic K. Complete axiomatizations for their team-based extensions, propositional team logic PTL and modal team logic MTL, are presented.

[1]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[2]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[3]  Raul Hakli,et al.  Does the deduction theorem fail for modal logic? , 2011, Synthese.

[4]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[5]  W. W. Armstrong,et al.  Dependency Structures of Data Base Relationships , 1974, IFIP Congress.

[6]  J. Väänänen,et al.  Modal Dependence Logic , 2008 .

[7]  Fan Yang,et al.  On Extensions and Variants of Dependence Logic : A study of intuitionistic connectives in the team semantics setting , 2014 .

[8]  Jonni Virtema,et al.  Axiomatizing Propositional Dependence Logics , 2015, CSL.

[9]  de Boudewijn Bruin New perspectives on games and interaction , 2008 .

[10]  J. Hintikka,et al.  Informational Independence as a Semantical Phenomenon , 1989 .

[11]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.

[12]  Valentin Goranko,et al.  Model theory of modal logic , 2007, Handbook of Modal Logic.

[13]  Juha Kontinen,et al.  Team Logic and Second-Order Logic , 2011, Fundam. Informaticae.

[14]  Julian-Steffen Müller,et al.  A Van Benthem Theorem for Modal Team Semantics , 2015, CSL.

[15]  Juha Kontinen,et al.  Axiomatizing first order consequences in dependence logic , 2012, Ann. Pure Appl. Log..

[16]  Lauri Hella,et al.  Modal Inclusion Logic: Being Lax is Simpler than Being Strict , 2015, MFCS.