Beam engineering of quantum cascade lasers

This paper reviews beam engineering of mid-infrared and terahertz quantum cascade lasers (QCLs), based on two approaches: designer plasmonic structures and deformed microcavities. The plasmonic structures couple laser emission into surface waves and control the laser wavefront in the near-field, thereby greatly increasing beam collimation or introducing new functionalities to QCLs. The plasmonic designs overall preserve laser performance in terms of operating temperature and power output. The deformed microcavity QCLs operate primarily on whispering-gallery modes, which have much higher quality factors than other modes, leading to lower threshold current densities. Cavity deformations are carefully controlled to greatly enhance directionality and output power.

[1]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[2]  A. Davies,et al.  Graded photonic crystal terahertz quantum cascade lasers , 2010 .

[3]  Qi Jie Wang,et al.  Plasmonics for Laser Beam Shaping , 2010, IEEE Transactions on Nanotechnology.

[4]  A. Mooradian,et al.  Observation of the Interaction of Plasmons with Longitudinal Optical Phonons in GaAs , 1966 .

[5]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[6]  Erich Gornik,et al.  Surface-emitting distributed feedback quantum-cascade lasers , 2000 .

[7]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[8]  Claire F. Gmachl,et al.  Long-wavelength (9.5-11.5 /spl mu/m) microdisk quantum-cascade lasers , 1997 .

[9]  Hai-woong Lee,et al.  Universal output directionality of single modes in a deformed microcavity , 2007 .

[10]  Christian Pflugl,et al.  Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers. , 2007, Optics express.

[11]  Roberto Righini,et al.  Localization of light in a disordered medium , 1997, Nature.

[12]  Matthias Wuttig,et al.  High-power laser light source for near-field optics and its application to high-density optical data storage , 1999 .

[13]  R. Kouyoumjian Asymptotic high-frequency methods , 1965 .

[14]  R. Chang,et al.  Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission , 1986, Science.

[15]  Federico Capasso,et al.  Quantum cascade lasers with integrated plasmonic antenna-array collimators. , 2008, Optics express.

[16]  Daniel M. Mittleman,et al.  Interference-induced terahertz transparency in a semiconductor magneto-plasma , 2010 .

[17]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[18]  G. Strasser,et al.  Strategies toward the realization of two-dimensional broadband and coherent quantum cascade ring laser arrays , 2010 .

[19]  Jan Wiersig Boundary element method for resonances in dielectric microcavities , 2003 .

[20]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[21]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[22]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[23]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[24]  Nanfang Yu,et al.  Plasmonic Laser Antennas and Related Devices , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Junichi Takahara,et al.  Propagation properties of guided waves in index-guided two-dimensional optical waveguides , 2005 .

[26]  Gaetano Scamarcio,et al.  High peak power (2.2 W) superlattice quantum cascade laser , 2001 .

[27]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[28]  David A. Ritchie,et al.  Quasi-periodic distributed feedback laser , 2010 .

[29]  Federico Capasso,et al.  Surface emitting terahertz quantum cascade laser with a double-metal waveguide. , 2006, Optics express.

[30]  Federico Capasso,et al.  High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings , 2009 .

[31]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[32]  Jerry R. Meyer,et al.  Photonic-crystal distributed-feedback quantum cascade lasers , 2002 .

[33]  F. Capasso,et al.  Angular emission characteristics of quantum cascade spiral microlasers. , 2009, Optics express.

[34]  Manijeh Razeghi,et al.  High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP/GaInAs/InAlAs material system , 2009, OPTO.

[35]  Andrew G. Glen,et al.  APPL , 2001 .

[36]  J. Reno,et al.  A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB , 2011 .

[37]  Richard K. Chang,et al.  Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars , 2003 .

[38]  Federico Capasso,et al.  Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators , 2011 .

[39]  Jan Wiersig,et al.  Combining directional light output and ultralow loss in deformed microdisks. , 2007, Physical review letters.

[40]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[41]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[42]  L. Largeau,et al.  Injection of midinfrared surface plasmon polaritons with an integrated device , 2010 .

[43]  Carlo Sirtori,et al.  Resonant tunneling in quantum cascade lasers , 1998 .

[44]  D. Pile,et al.  Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface , 2004 .

[45]  R. F. Wallis,et al.  Theory of surface plasmon-surface optical phonon interaction in polar semiconductors , 1971 .

[46]  Scott W. Corzine,et al.  Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators , 2007 .

[47]  W. L. Bond,et al.  Stimulated Emission into Optical Whispering Modes of Spheres , 1961 .

[48]  Semiconductor lasers with integrated plasmonic polarizers , 2009 .

[49]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  Harry A. Atwater The promise of plasmonics. , 2007 .

[51]  Federico Capasso,et al.  Directional emission and universal far-field behavior from semiconductor lasers with limaçon-shaped microcavity , 2009 .

[52]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[53]  Richard K. Chang,et al.  Q spoiling and directionality in deformed ring cavities. , 1994, Optics letters.

[54]  C. Sirtori,et al.  Semiconductor surface plasmon sources. , 2010, Physical review letters.

[55]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[56]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[57]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[58]  Lasing in disordered media , 2002, QELS 2002.

[59]  Mattias Beck,et al.  Surface-emitting 10.1 mum quantum-cascade distributed feedback lasers , 1999 .

[60]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[61]  Lijun Wang,et al.  Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance , 2010 .

[62]  Jesper Jung,et al.  Scaling for gap plasmon based waveguides. , 2008, Optics express.

[63]  Federico Capasso,et al.  Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning. , 2010, ACS nano.

[64]  Kitson,et al.  Full Photonic Band Gap for Surface Modes in the Visible. , 1996, Physical review letters.

[65]  Qi Jie Wang,et al.  Small-divergence semiconductor lasers by plasmonic collimation , 2008 .

[66]  Cho,et al.  High-power directional emission from microlasers with chaotic resonators , 1998, Science.

[67]  Federico Capasso,et al.  Multi-beam multi-wavelength semiconductor lasers , 2009 .

[68]  Qi Jie Wang,et al.  3 W Continuous-Wave Room Temperature Single-Facet Emission From Quantum Cascade Lasers Based On Nonresonant Extraction Design Approach , 2009 .

[69]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[70]  Luke R. Wilson,et al.  Single-mode surface-emitting quantum-cascade lasers , 2005 .

[71]  M. Razeghi,et al.  High-Performance InP-Based Mid-IR Quantum Cascade Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[72]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[73]  A. Tredicucci,et al.  Vertically emitting microdisk lasers , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[74]  G. Strasser,et al.  Long-wavelength (/spl lambda/=10 /spl mu/m) quadrupolar-shaped GaAs-AlGaAs microlasers , 2000, IEEE Journal of Quantum Electronics.

[75]  Wolfgang Knoll,et al.  Surface–plasmon microscopy , 1988, Nature.

[76]  E. Ash,et al.  Super-resolution Aperture Scanning Microscope , 1972, Nature.

[77]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[78]  D. N. Mirlin,et al.  Surface plasmon-phonon interaction in n-InSb , 1972 .

[79]  Hirofumi Kan,et al.  Indirect pump scheme for quantum cascade lasers: dynamics of electron-transport and very high T0-values. , 2008, Optics express.

[80]  Anthony E. Siegman,et al.  Defining, measuring, and optimizing laser beam quality , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[81]  S. Bozhevolnyi Effective-index modeling of channel plasmon polaritons. , 2006, Optics express.

[82]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[83]  Qi Jie Wang,et al.  Deformed microcavity quantum cascade lasers with directional emission , 2009 .

[84]  Mattias Beck,et al.  High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm , 2001 .

[85]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[86]  A. Stone,et al.  Ray and wave chaos in asymmetric resonant optical cavities , 1997, Nature.

[87]  Mattias Beck,et al.  Low-divergence single-mode terahertz quantum cascade laser , 2009 .

[88]  L. Novotný,et al.  Antennas for light , 2011 .

[89]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[90]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[91]  Federico Capasso,et al.  Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators , 2008 .

[92]  Heinrich Kurz,et al.  Low-frequency active surface plasmon optics on semiconductors , 2006 .

[93]  M. Beck,et al.  Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers , 2000 .

[94]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[95]  Dennis G. Hall,et al.  Island size effects in nanoparticle-enhanced photodetectors , 1998 .

[96]  Federico Capasso,et al.  A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. , 2009, ACS nano.

[97]  Federico Capasso,et al.  Quantum Cascade Surface-Emitting Photonic Crystal Laser , 2003, Science.

[98]  Walter Rotman,et al.  A Study of Single-Surface Corrugated Guides , 1951, Proceedings of the IRE.

[99]  Lambertus Hesselink,et al.  Ultrahigh light transmission through a C-shaped nanoaperture. , 2003, Optics letters.

[100]  M. Rooks,et al.  Demonstration of laser action in a pseudorandom medium , 2010 .

[101]  W. Knap,et al.  Investigation of longitudinal‐optical phonon‐plasmon coupled modes in highly conducting bulk GaN , 1995 .

[102]  D. J. Lockwood,et al.  Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy , 2005 .

[103]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[104]  Federico Capasso,et al.  Emission properties of electrically pumped triangular shaped microlasers. , 2010, Optics express.

[105]  Ian C. Freestone,et al.  AN INVESTIGATION OF THE ORIGIN OF THE COLOUR OF THE LYCURGUS CUP BY ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY , 1990 .

[106]  Philippe Lalanne,et al.  Interaction between optical nano-objects at metallo-dielectric interfaces , 2006 .

[107]  Mark L Brongersma,et al.  Surface plasmon polariton analogue to Young's double-slit experiment. , 2007, Nature nanotechnology.

[108]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[109]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[110]  A. Forchel,et al.  Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. , 2001, Physical review letters.

[111]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[112]  Qi Jie Wang,et al.  Designer spoof surface plasmon structures collimate terahertz laser beams. , 2010, Nature materials.

[113]  Federico Capasso,et al.  Whispering-gallery mode resonators for highly unidirectional laser action , 2010, Proceedings of the National Academy of Sciences.

[114]  Alessandro Chiasera,et al.  Spherical whispering‐gallery‐mode microresonators , 2010 .

[115]  R. Colombelli,et al.  Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions , 2009, Nature.

[116]  Werner Schrenk,et al.  Low divergence single-mode surface emitting quantum cascade ring lasers , 2008 .

[117]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[118]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[119]  Federico Capasso,et al.  Bowtie plasmonic quantum cascade laser antenna. , 2007, Optics express.

[120]  G. Goubau Surface Waves and Their Application to Transmission Lines , 1950 .

[121]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.