Some properties of multivariate INAR(1) processes

INteger-valued AutoRegressive (INAR) processes are common choices for modeling non-negative discrete valued time series. In this framework and motivated by the frequent occurrence of multivariate count time series data in several different disciplines, a generalized specification of the bivariate INAR(1) (BINAR(1)) model is considered. In this new, full BINAR(1) process, dependence between the two series stems from two sources simultaneously. The main focus is on the specific parametric case that arises under the assumption of a bivariate Poisson distribution for the innovations of the process. As it is shown, such an assumption gives rise to a Hermite BINAR(1) process. The method of conditional maximum likelihood is suggested for the estimation of its unknown parameters. A short application on financial count data illustrates the model.

[1]  Maria Eduardo da Silva,et al.  Difference Equations for the Higher‐Order Moments and Cumulants of the INAR(1) Model , 2004 .

[2]  Andréas Heinen,et al.  Multivariate autoregressive modeling of time series count data using copulas , 2007 .

[3]  Alain Latour,et al.  The Multivariate Ginar(p) Process , 1997, Advances in Applied Probability.

[4]  Konstantinos Fokianos,et al.  Some recent progress in count time series , 2011 .

[5]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[6]  Dimitris Karlis,et al.  On Estimation of the Bivariate Poisson INAR Process , 2013, Commun. Stat. Simul. Comput..

[7]  Jürgen Franke,et al.  Multivariate First-Order Integer-Valued Autoregressions , 1993 .

[8]  Robert C. Jung,et al.  Binomial thinning models for integer time series , 2006 .

[9]  A. M. M. Shahiduzzaman Quoreshi,et al.  Bivariate Time Series Modeling of Financial Count Data , 2006 .

[10]  Christian H. Weiß,et al.  Thinning operations for modeling time series of counts—a survey , 2008 .

[11]  R. Keith Freeland,et al.  True integer value time series , 2010 .

[12]  K. Fokianos Count Time Series Models , 2012 .

[13]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[14]  Ed. McKenzie,et al.  Linear characterizations of the Poisson distribution , 1991 .

[15]  Dimitris Karlis,et al.  A bivariate INAR(1) process with application , 2011 .

[16]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[17]  Roman Liesenfeld,et al.  Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..

[18]  E. McKenzie,et al.  Some ARMA models for dependent sequences of poisson counts , 1988, Advances in Applied Probability.

[19]  P. Lewis,et al.  A bivariate first-order autoregressive time series model in exponential variables (BEAR(1)) , 1989 .

[20]  C D Kemp,et al.  Some properties of the 'hermite' distribution. , 1965, Biometrika.

[21]  S. Quoreshi A Vector Integer-Valued Moving Average Modelfor High Frequency Financial Count Data , 2006 .

[22]  F. Steutel,et al.  Discrete operator-selfdecomposability and queueing networks , 1986 .

[23]  Rob J Hyndman,et al.  Theory & Methods: Non‐Gaussian Conditional Linear AR(1) Models , 2000 .

[24]  D. Karlis,et al.  Flexible Bivariate INAR(1) Processes Using Copulas , 2013 .

[25]  Ken Nyholm,et al.  Inferring the private information content of trades: a regime‐switching approach , 2003 .

[26]  A. W. Kemp,et al.  An alternative derivation of the Hermite distribution , 1966 .

[27]  Andréas Heinen,et al.  Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model , 2003 .

[28]  Heng Liu Some Models for Time Series of Counts , 2012 .

[29]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[30]  Dimitris Karlis,et al.  Modeling Multivariate Count Data Using Copulas , 2009, Commun. Stat. Simul. Comput..

[31]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[32]  D. Karlis EM Algorithm for Mixed Poisson and Other Discrete Distributions , 2005, ASTIN Bulletin.

[33]  Atanu Biswas,et al.  Statistical analysis of discrete-valued time series using categorical ARMA models , 2013, Comput. Stat. Data Anal..

[34]  Dimitris Karlis,et al.  On composite likelihood estimation of a multivariate INAR(1) model , 2013 .

[35]  Thong Ngee Goh,et al.  A model for integer-valued time series with conditional overdispersion , 2012, Comput. Stat. Data Anal..