Some properties of multivariate INAR(1) processes
暂无分享,去创建一个
[1] Maria Eduardo da Silva,et al. Difference Equations for the Higher‐Order Moments and Cumulants of the INAR(1) Model , 2004 .
[2] Andréas Heinen,et al. Multivariate autoregressive modeling of time series count data using copulas , 2007 .
[3] Alain Latour,et al. The Multivariate Ginar(p) Process , 1997, Advances in Applied Probability.
[4] Konstantinos Fokianos,et al. Some recent progress in count time series , 2011 .
[5] Ed. McKenzie,et al. SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .
[6] Dimitris Karlis,et al. On Estimation of the Bivariate Poisson INAR Process , 2013, Commun. Stat. Simul. Comput..
[7] Jürgen Franke,et al. Multivariate First-Order Integer-Valued Autoregressions , 1993 .
[8] Robert C. Jung,et al. Binomial thinning models for integer time series , 2006 .
[9] A. M. M. Shahiduzzaman Quoreshi,et al. Bivariate Time Series Modeling of Financial Count Data , 2006 .
[10] Christian H. Weiß,et al. Thinning operations for modeling time series of counts—a survey , 2008 .
[11] R. Keith Freeland,et al. True integer value time series , 2010 .
[12] K. Fokianos. Count Time Series Models , 2012 .
[13] Mohamed Alosh,et al. FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .
[14] Ed. McKenzie,et al. Linear characterizations of the Poisson distribution , 1991 .
[15] Dimitris Karlis,et al. A bivariate INAR(1) process with application , 2011 .
[16] Patrick Billingsley,et al. Statistical inference for Markov processes , 1961 .
[17] Roman Liesenfeld,et al. Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..
[18] E. McKenzie,et al. Some ARMA models for dependent sequences of poisson counts , 1988, Advances in Applied Probability.
[19] P. Lewis,et al. A bivariate first-order autoregressive time series model in exponential variables (BEAR(1)) , 1989 .
[20] C D Kemp,et al. Some properties of the 'hermite' distribution. , 1965, Biometrika.
[21] S. Quoreshi. A Vector Integer-Valued Moving Average Modelfor High Frequency Financial Count Data , 2006 .
[22] F. Steutel,et al. Discrete operator-selfdecomposability and queueing networks , 1986 .
[23] Rob J Hyndman,et al. Theory & Methods: Non‐Gaussian Conditional Linear AR(1) Models , 2000 .
[24] D. Karlis,et al. Flexible Bivariate INAR(1) Processes Using Copulas , 2013 .
[25] Ken Nyholm,et al. Inferring the private information content of trades: a regime‐switching approach , 2003 .
[26] A. W. Kemp,et al. An alternative derivation of the Hermite distribution , 1966 .
[27] Andréas Heinen,et al. Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model , 2003 .
[28] Heng Liu. Some Models for Time Series of Counts , 2012 .
[29] Fw Fred Steutel,et al. Discrete analogues of self-decomposability and stability , 1979 .
[30] Dimitris Karlis,et al. Modeling Multivariate Count Data Using Copulas , 2009, Commun. Stat. Simul. Comput..
[31] Eddie McKenzie,et al. Discrete variate time series , 2003 .
[32] D. Karlis. EM Algorithm for Mixed Poisson and Other Discrete Distributions , 2005, ASTIN Bulletin.
[33] Atanu Biswas,et al. Statistical analysis of discrete-valued time series using categorical ARMA models , 2013, Comput. Stat. Data Anal..
[34] Dimitris Karlis,et al. On composite likelihood estimation of a multivariate INAR(1) model , 2013 .
[35] Thong Ngee Goh,et al. A model for integer-valued time series with conditional overdispersion , 2012, Comput. Stat. Data Anal..