Changing and unchanging of the domination number of a graph

Let G be a graph and @c(G) denote the domination number of G. A dominating set D of a graph G with |D|[email protected](G) is called a @c-set of G. A vertex x of a graph G is called: (i) @c-fixed if x belongs to every @c-set, (ii) @c-free if x belongs to some @c-set but not to all @c-sets, (iii) @c-bad if x belongs to no @c-set, (iv) @c^--free if x is @c-free and @c(G-x)[email protected](G)-1, (v) @c^0-free if x is @c-free and @c(G-x)[email protected](G), and (vi) @c^q-fixed if x is @c-fixed and @c(G-x)[email protected](G)+q. In this paper we investigate for any vertex x of a graph G whether x is @c^q-fixed, @c^0-free, @c^--free or @c-bad when G is modified by deleting a vertex or adding or deleting an edge.

[1]  Amitava Bhattacharya,et al.  Effect of edge-subdivision on vertex-domination in a graph , 2002, Discuss. Math. Graph Theory.

[2]  Ronald D. Dutton,et al.  Vertex domination-critical graphs , 1988, Networks.

[3]  Michael A. Henning,et al.  Strong equality of domination parameters in trees , 2003, Discret. Math..

[4]  Odile Favaron,et al.  The diameter of domination k-critical graphs , 1994, J. Graph Theory.

[5]  Miranca Fischermann,et al.  Block graphs with unique minimum dominating sets , 2001, Discret. Math..

[6]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[7]  David P. Sumner Critical concepts in domination , 1990, Discret. Math..

[8]  D. P. Summer Critical concepts in domination , 1991 .

[9]  Michael A. Henning,et al.  Domination in graphs , 1998 .

[10]  Ulrich Teschner,et al.  New results about the bondage number of a graph , 1997, Discret. Math..

[11]  E. Sampathkumar,et al.  Domination and neighbourhood critical, fixed, free and totally free points , 1992 .

[12]  Frank Harary,et al.  Domination alteration sets in graphs , 1983, Discret. Math..

[13]  Michael A. Henning,et al.  Changing and unchanging domination: a classification , 2003, Discret. Math..

[14]  David P. Sumner,et al.  Domination critical graphs , 1983, J. Comb. Theory, Ser. B.

[15]  Douglas F. Rall,et al.  Bounds on the bondage number of a graph , 1994, Discret. Math..

[16]  Jochen Harant,et al.  On Domination in Graphs , 2005, Discuss. Math. Graph Theory.

[17]  Christina M. Mynhardt,et al.  Vertices contained in every minimum dominating set of a tree , 1999, J. Graph Theory.

[18]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.