An Estimation Theoretical View on Ambrosio‐Tortorelli Image Segmentation
暂无分享,去创建一个
[1] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[2] Ieee Xplore,et al. IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[3] D. Mumford,et al. Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .
[4] T. E. Harris. The Existence of Stationary Measures for Certain Markov Processes , 1956 .
[5] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] H. Rue. Fast sampling of Gaussian Markov random fields , 2000 .
[7] R. Fildes. Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .
[8] H. Damasio,et al. IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .
[9] L. Ambrosio,et al. Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .
[10] L. Tippett,et al. Applied Statistics. A Journal of the Royal Statistical Society , 1952 .
[11] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[12] Tobias Preußer,et al. Ambrosio-Tortorelli Segmentation of Stochastic Images , 2010, ECCV.
[13] L. Tierney. Rejoinder: Markov Chains for Exploring Posterior Distributions , 1994 .
[14] David Mumford,et al. Communications on Pure and Applied Mathematics , 1989 .
[15] Hanno Scharr,et al. An Estimation Theoretical Approach to Ambrosio-Tortorelli Image Segmentation , 2011, DAGM-Symposium.