An Estimation Theoretical View on Ambrosio‐Tortorelli Image Segmentation

In this paper, we examine the Ambrosio-Tortorelli (AT) functional [1] for image segmentation from an estimation theoretical point of view. Instead of considering a single point estimate, i.e. the maximum-a-posteriori (MAP) estimate, we adopt a wider estimation theoretical view-point, meaning we consider images to be random variables and investigate their distribution. We derive an effective block-Gibbs-sampler for this posterior probability density function (PDF) based on the theory of Gaussian Markov random fields (GMRF) [2]. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[2]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[4]  T. E. Harris The Existence of Stationary Measures for Certain Markov Processes , 1956 .

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[7]  R. Fildes Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .

[8]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[9]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[10]  L. Tippett,et al.  Applied Statistics. A Journal of the Royal Statistical Society , 1952 .

[11]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[12]  Tobias Preußer,et al.  Ambrosio-Tortorelli Segmentation of Stochastic Images , 2010, ECCV.

[13]  L. Tierney Rejoinder: Markov Chains for Exploring Posterior Distributions , 1994 .

[14]  David Mumford,et al.  Communications on Pure and Applied Mathematics , 1989 .

[15]  Hanno Scharr,et al.  An Estimation Theoretical Approach to Ambrosio-Tortorelli Image Segmentation , 2011, DAGM-Symposium.