Coherence and realism in the Aharonov-Bohm effect

The Aharonov-Bohm effect is a fundamental topological phenomenon with a wide range of applications. It consists of a charge encircling a region with a magnetic flux in a superposition of wave packets having their relative phase affected by the flux. In this work, we analyze this effect using an entropic measure known as realism, originally introduced as a quantifier of a system's degree of reality and mathematically related to notions of global and local quantum coherence. More precisely, we look for observables that lead to gauge-invariant realism associated with the charge before it completes its loop. We find that the realism of these operators has a sudden change when the line connecting the center of both wave packets crosses the solenoid. Moreover, we consider the case of a quantized magnetic-field source, pointing out similarities and differences between the two cases. Finally, we discuss some consequences of these results.

[1]  Y. Aharonov,et al.  Aharonov–Bohm effect with an effective complex-valued vector potential , 2021, New Journal of Physics.

[2]  Muhammad Asjad,et al.  Quantum Information of the Aharanov–Bohm Ring with Yukawa Interaction in the Presence of Disclination , 2022, Entropy.

[3]  Marcos L. W. Basso,et al.  Reality variation under monitoring with weak measurements , 2021, Quantum Information Processing.

[4]  E. Cohen,et al.  Geometric Phases and The Sagnac Effect: Foundational Aspects and Sensing Applications , 2021, Advanced Quantum Technologies.

[5]  P. R. Dieguez,et al.  Realism-based nonlocality: Invariance under local unitary operations and asymptotic decay for thermal correlated states , 2021, Physica A: Statistical Mechanics and its Applications.

[6]  E. Cohen,et al.  Dynamical nonlocality in quantum time via modular operators , 2021, Physical Review A.

[7]  P. R. Dieguez,et al.  Experimental assessment of physical realism in a quantum-controlled device , 2021, Communications Physics.

[8]  Alexandre C. Orthey,et al.  Quantum realism: axiomatization and quantification , 2021, 2110.04870.

[9]  P. Saldanha Aharonov-Casher and shielded Aharonov-Bohm effects with a quantum electromagnetic field , 2020, Physical Review A.

[10]  P. R. Dieguez,et al.  Irrealism from fringe visibility in matter-wave double-slit interference with initial contractive states , 2020 .

[11]  Philippe Allard Guérin,et al.  Probing quantum coherence at a distance and Aharonov-Bohm nonlocality , 2020, Physical Review A.

[12]  A. C. S. Costa,et al.  Information-based approach towards a unified resource theory , 2020, Quantum Information Processing.

[13]  V. Vedral,et al.  Aharonov-Bohm Phase is Locally Generated Like All Other Quantum Phases. , 2019, Physical review letters.

[14]  Philipp A. Hoehn,et al.  A change of perspective: switching quantum reference frames via a perspective-neutral framework , 2018, Quantum.

[15]  P. Saldanha Local Description of the Aharonov–Bohm Effect with a Quantum Electromagnetic Field , 2019, 1910.10650.

[16]  Alexandre C. Orthey,et al.  Nonlocality, quantum correlations, and violations of classical realism in the dynamics of two noninteracting quantum walkers , 2019, Physical Review A.

[17]  R. M. Angelo,et al.  Tripartite realism-based quantum nonlocality , 2019, Physical Review A.

[18]  Y. Gefen,et al.  Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond , 2019, Nature Reviews Physics.

[19]  Leonardo Neves,et al.  Quantum Discord, Thermal Discord, and Entropy Generation in the Minimum Error Discrimination Strategy , 2019, Entropy.

[20]  R. M. Angelo,et al.  Resilience of realism-based nonlocality to local disturbance , 2018, Physical Review A.

[21]  Esteban Castro-Ruiz,et al.  Quantum mechanics and the covariance of physical laws in quantum reference frames , 2017, Nature Communications.

[22]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[23]  M. Barbieri,et al.  Information-reality complementarity in photonic weak measurements , 2018, Physical Review A.

[24]  R. M. Angelo,et al.  Weak quantum discord , 2018, Quantum Inf. Process..

[25]  P. R. Dieguez,et al.  Information-reality complementarity: The role of measurements and quantum reference frames , 2017, 1711.07739.

[26]  A. Pati,et al.  Trade-off relation for coherence and disturbance , 2017, Physical Review A.

[27]  Qi Jie Wang,et al.  The Transition from Quantum Field Theory to One-Particle Quantum Mechanics and a Proposed Interpretation of Aharonov–Bohm Effect , 2016, Foundations of Physics.

[28]  V. Negnevitsky,et al.  Sequential modular position and momentum measurements of a trapped ion mechanical oscillator , 2017, 1709.10469.

[29]  D. Struppa,et al.  Finally making sense of the double-slit experiment , 2017, Proceedings of the National Academy of Sciences.

[30]  P. Pearle,et al.  Quantized vector potential and alternative views of the magnetic Aharonov-Bohm phase shift , 2016, 1605.04324.

[31]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[32]  P. Pearle,et al.  Quantum-mechanical inclusion of the source in the Aharonov-Bohm effects , 2015, 1507.00068.

[33]  S. Walborn,et al.  Quantum information processing in phase space: A modular variables approach , 2015, 1512.02957.

[34]  G. Adesso,et al.  Assisted Distillation of Quantum Coherence. , 2015, Physical review letters.

[35]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[36]  D. Rohrlich,et al.  Nonlocality of the Aharonov-Bohm Effect , 2015, 1502.05716.

[37]  P. Saldanha Alternative Expression for the Electromagnetic Lagrangian , 2015, 1509.02346.

[38]  D. Rohrlich,et al.  Comment on “Role of potentials in the Aharonov-Bohm effect” , 2015, 1604.05748.

[39]  L. Vaidman Reply to “Comment on ‘Role of potentials in the Aharonov-Bohm effect’ ” , 2015, 1508.00743.

[40]  K. Kang Locality of the Aharonov-Bohm-Casher effect , 2014, 1408.0607.

[41]  A. L. O. Bilobran,et al.  A measure of physical reality , 2014, 1411.7811.

[42]  A. Elitzur,et al.  Quantum Oblivion: A Master Key for Many Quantum Riddles , 2014, 1411.2278.

[43]  T. Kaufherr How to test the gauge-invariant non-local quantum dynamics of the Aharonov–Bohm effect , 2014, 1411.2814.

[44]  Yutaka Shikano,et al.  Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap , 2014, Nature Communications.

[45]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[46]  S. Walborn,et al.  Continuous discretization of infinite-dimensional Hilbert spaces , 2013, 1310.4452.

[47]  S. Walborn,et al.  Experimental observation of quantum correlations in modular variables , 2012, 1208.6222.

[48]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.

[49]  L. Vaidman Role of potentials in the Aharonov-Bohm effect , 2011, 1110.6169.

[50]  R. M. Angelo,et al.  Physics within a quantum reference frame , 2010, 1007.2292.

[51]  A. Parks,et al.  Experimental Evidence for a Dynamical Non-locality Induced Effect in Quantum Interference Using Weak Values , 2010, 1010.3289.

[52]  R. Renner,et al.  The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.

[53]  E. Cavalcanti,et al.  Quantum Paradoxes , 2010 .

[54]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[55]  Shengjun Wu,et al.  Entropic uncertainty relation for mutually unbiased bases , 2008, 0811.2298.

[56]  F. Anselmi,et al.  Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules , 2005, quant-ph/0501121.

[57]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[58]  Paul Busch,et al.  "No Information Without Disturbance": Quantum Limitations of Measurement , 2007, 0706.3526.

[59]  Lorenzo Maccone,et al.  Entropic information-disturbance tradeoff , 2006, quant-ph/0604038.

[60]  J. Åberg Quantifying Superposition , 2006, quant-ph/0612146.

[61]  Yakir Aharonov,et al.  Quantum Paradoxes: Quantum Theory for the Perplexed , 2005 .

[62]  Minchul Lee,et al.  Exact quantum description of the Aharonov–Bohm effect , 2004 .

[63]  Y. Aharonov,et al.  The effect of a magnetic flux line in quantum theory. , 2004, Physical review letters.

[64]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[65]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[66]  E. Santos,et al.  Microscopic theory of the Aharonov-Bohm effect , 1999 .

[67]  Richard Healey,et al.  Nonlocality and the Aharonov-Bohm Effect , 1997, Philosophy of Science.

[68]  J. Anandan,et al.  Is There a Preferred Canonical Quantum Gauge? , 1997 .

[69]  Jorge Sánchez,et al.  Entropic uncertainty and certainty relations for complementary observables , 1993 .

[70]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[71]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[72]  Yamada,et al.  Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. , 1986, Physical review letters.

[73]  S. Olariu,et al.  The quantum effects of electromagnetic fluxes , 1985 .

[74]  Yakir Aharonov,et al.  Topological Quantum Effects for Neutral Particles , 1984 .

[75]  Yakir Aharonov,et al.  Quantum Frames of Reference , 1984 .

[76]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[77]  Yutaka Sugita,et al.  Observation of Aharonov-Bohm effect by electron holography , 1982 .

[78]  Y. Aharonov,et al.  Modular variables in quantum theory , 1969 .

[79]  D. Bohm,et al.  Further Discussion of the Role of Electromagnetic Potentials in the Quantum Theory , 1963 .

[80]  F. Belinfante Consequences of the Postulate of a Complete Commuting Set of Observables in Quantum Electrodynamics , 1962 .

[81]  G. Möllenstedt,et al.  Kontinuierliche Phasenschiebung von Elektronenwellen im kraftfeldfreien Raum durch das magnetische Vektorpotential eines Solenoids , 1962 .

[82]  D. Bohm,et al.  Remarks on the Possibility of Quantum Electrodynamics without Potentials , 1962 .

[83]  B. Dewitt Quantum Theory without Electromagnetic Potentials , 1962 .

[84]  D. Bohm,et al.  Further Considerations on Electromagnetic Potentials in the Quantum Theory , 1961 .

[85]  I. Talmi,et al.  The quantum mechanical effects of magnetic fields confined to inaccessible regions , 1961 .

[86]  R. Chambers Shift of an electron interference pattern by enclosed magnetic flux , 1960 .

[87]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[88]  W. Ehrenberg,et al.  The Refractive Index in Electron Optics and the Principles of Dynamics , 1949 .

[89]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .