A Framework for Topic Generation and Labeling from MOOC Discussions

This study proposes a standardised open framework to automatically generate and label discussion topics from Massive Open Online Courses (MOOCs). The proposed framework expects to overcome the issues experienced by MOOC participants and teaching staff in locating and navigating their information needs effectively. We analysed two MOOCs -- Machine Learning and Statistics: Making Sense of Data offered during 2013 and obtained statistically significant results for automated topic labeling. However, more experiments with additional MOOCs from different MOOC platforms are necessary to generalise our findings.