Measuring the cosmological bulk flow using the peculiar velocities of supernovae
暂无分享,去创建一个
[1] A. Nusser,et al. THE COSMOLOGICAL BULK FLOW: CONSISTENCY WITH ΛCDM AND z ≈ 0 CONSTRAINTS ON σ8 AND γ , 2011, 1101.1650.
[2] A. Kashlinsky,et al. MEASURING THE DARK FLOW WITH PUBLIC X-RAY CLUSTER DATA , 2010, 1012.3214.
[3] E. Pierpaoli,et al. MEASURING THE GALAXY CLUSTER BULK FLOW FROM WMAP DATA , 2010, 1011.2781.
[4] Yin-Zhe Ma,et al. Peculiar velocity field: Constraining the tilt of the Universe , 2010, 1010.4276.
[5] R. Nichol,et al. THE EFFECT OF PECULIAR VELOCITIES ON SUPERNOVA COSMOLOGY , 2010, 1012.2912.
[6] Subir Sarkar,et al. Probing the anisotropic local Universe and beyond with SNe Ia data , 2010, 1011.6292.
[7] M. S. Burns,et al. SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.
[8] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.
[9] D. Kocevski,et al. THE ERROR BUDGET OF THE DARK FLOW MEASUREMENT , 2010, 1001.1261.
[10] D. Kocevski,et al. A NEW MEASUREMENT OF THE BULK FLOW OF X-RAY LUMINOUS CLUSTERS OF GALAXIES , 2009, 0910.4958.
[11] M. Hudson,et al. Cosmic flows on 100 h−1 Mpc scales: standardized minimum variance bulk flow, shear and octupole moments , 2009, 0911.5516.
[12] R. Keisler. THE STATISTICAL SIGNIFICANCE OF THE “DARK FLOW” , 2009, 0910.4233.
[13] M. Hudson,et al. Consistently large cosmic flows on scales of 100 h−1 Mpc: a challenge for the standard ΛCDM cosmology , 2008, 0809.4041.
[14] S. Colombi,et al. COSMIC FLOW FROM TWO MICRON ALL-SKY REDSHIFT SURVEY: THE ORIGIN OF COSMIC MICROWAVE BACKGROUND DIPOLE AND IMPLICATIONS FOR ΛCDM COSMOLOGY , 2008, 0810.3658.
[15] D. Kocevski,et al. A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications , 2008, 0809.3734.
[16] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[17] R. A. Vanderveld. Quantifying Parameter Errors Due to the Peculiar Velocities of Type Ia Supernovae , 2008, 0801.4041.
[18] D. Kocevski,et al. Our Peculiar Motion Away from the Local Void , 2007, 0705.4139.
[19] J. Fynbo,et al. The Velocity Field of the Local Universe from Measurements of Type Ia Supernovae , 2006, astro-ph/0612137.
[20] L. Hui,et al. Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys , 2005, astro-ph/0512159.
[21] M. Hudson,et al. ApJ in press Preprint typeset using L ATEX style emulateapj v. 6/22/04 COSMOLOGICAL PARAMETERS FROM THE COMPARISON OF THE 2MASS GRAVITY FIELD WITH PECULIAR VELOCITY SURVEYS , 2005 .
[22] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[23] S. Zaroubi,et al. THE LARGE-SCALE TIDAL VELOCITY FIELD , 2001, astro-ph/0102190.
[24] Helen Valentine,et al. The IRAS PSCz dipole , 1999 .
[25] H. Ford,et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.
[26] M. Birkinshaw,et al. Beyond the Thin Lens Approximation , 1994, astro-ph/9405021.
[27] J. Huchra,et al. A Redshift Survey of IRAS Galaxies. V. The Acceleration on the Local Group , 1992 .
[28] A. Kashlinsky,et al. Large-scale structure in the Universe , 1991, Nature.
[29] M. Sasaki. The magnitude-redshift relation in a perturbed Friedmann universe , 1987 .