Nonlinear microstrain theories

A hierarchy of higher order continua is presented that introduces additional degrees of freedom accounting for volume changes, rotation and straining of an underlying microstructure. An increase in the number of degrees of freedom represents a refinement of the material description. In addition to available nonlinear Cosserat and micromorphic theories, general formulations of elastoviscoplastic behaviour are proposed for microdilatation and microstretch continua. A microstrain theory is introduced that is based on six additional degrees of freedom describing the pure straining of the microstructural element. In each case, balance equations and boundary conditions are derived, decompositions of the finite strain measures into elastic and plastic parts are provided. The formulation of finite deformation elastoviscoplastic constitutive equations relies on the introduction of the free energy and dissipation potentials, thus complying with requirements of continuum thermodynamics. Some guidelines for the selection of a suitable higher order model for a given material close the discussion.

[1]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[2]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[3]  Peter Haupt,et al.  Continuum Mechanics and Theory of Materials , 1999 .

[4]  René Chambon,et al.  Plastic continuum with microstructure, Local Second Gradient Theories for Geomaterials : Localization Studies , 2001 .

[5]  Samuel Forest,et al.  Localization phenomena and regularization methods , 2004 .

[6]  G. Hu,et al.  Size-dependence of overall in-plane plasticity for fiber composites , 2004 .

[7]  Mgd Marc Geers,et al.  Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene , 1999 .

[8]  M. Epstein,et al.  GEOMETRICAL MATERIAL STRUCTURE OF ELASTOPLASTICITY , 1998 .

[9]  Y. Chastel,et al.  Continuum modeling of strain localization phenomena in metallic foams , 2005 .

[10]  C. Sansour A unified concept of elastic-viscoplastic Cosserat and micromorphic continua , 1998 .

[11]  G. Maugin Nonlocal theories or gradient-type theories - A matter of convenience , 1979 .

[12]  G. Hu,et al.  A variational method for non-linear micropolar composites , 2005 .

[13]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[14]  H. Steeb,et al.  A thermodynamic-consistent model describing growth and remodeling phenomena , 2003 .

[15]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[16]  Gérard A. Maugin,et al.  The method of virtual power in continuum mechanics: Application to coupled fields , 1980 .

[17]  P. M. Naghdi,et al.  On continuum thermodynamics , 1972 .

[18]  A. Cemal Eringen,et al.  Theory of thermo-microstretch elastic solids , 1990 .

[19]  E. Aifantis,et al.  Strain Gradient Crystal Plasticity: Thermomechanical Formulations and Applications , 2002 .

[20]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[21]  P. Cloetens,et al.  3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography , 2005 .

[22]  Samuel Forest,et al.  Finite deformation Cosserat-type modelling of dissipative solids and its application to crystal plasticity , 1998 .

[23]  Robert Cimrman,et al.  Microcontinuum approach in biomechanical modeling , 2003, Math. Comput. Simul..

[24]  Frédéric Feyel,et al.  F.E. computation of a triaxial specimen using a polycrystalline model , 1997 .

[25]  G. Maugin,et al.  Modelling of complex elastic crystals by means of multi-spin micromorphic media , 2005 .

[26]  Samuel Forest,et al.  Elastoviscoplastic constitutive frameworks for generalized continua , 2003 .

[27]  S. Forest,et al.  Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams , 2006 .

[28]  J. Mandel,et al.  Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques , 1973 .

[29]  Marcelo Epstein,et al.  Thermomechanics of volumetric growth in uniform bodies , 2000 .

[30]  H. Steeb,et al.  Modeling thin films applying an extended continuum theory based on a scalar-valued order parameter.: Part I: isothermal case , 2004 .

[31]  Greg Parker,et al.  Encyclopedia of Materials: Science and Technology , 2001 .

[32]  T. Ariman On the analysis of blood flow. , 1971, Journal of biomechanics.

[33]  Hans Muhlhaus,et al.  Continuum models for materials with microstructure , 1995 .

[34]  G. Maugin On the structure of the theory of polar elasticity , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  N. Fleck,et al.  Microbuckle initiation in fibre composites : A finite element study , 1995 .

[36]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[37]  J. Mandel,et al.  Plasticité classique et viscoplasticité , 1972 .

[38]  Youping Chen,et al.  Constitutive relations of micromorphic thermoplasticity , 2003 .

[39]  Charles B. Kafadar,et al.  Micropolar media—I the classical theory , 1971 .

[40]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[41]  Frédéric Feyel,et al.  Local approach to fracture , 2004 .

[42]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[43]  Georges Cailletaud,et al.  Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials , 2000 .

[44]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[45]  S. Forest,et al.  Cosserat overall modeling of heterogeneous materials , 1998 .

[46]  Wenxiong Huang,et al.  A study of localized deformation pattern in granular media , 2004 .