Buffering culture solution significantly improves astaxanthin production efficiency of mixotrophic Haematococcus pluvialis.

[1]  WEN-JIE Yu,et al.  A strategy for promoting carbon flux into fatty acid and astaxanthin biosynthesis by inhibiting the alternative oxidase respiratory pathway in Haematococcus pluvialis. , 2021, Bioresource technology.

[2]  Sang Jun Sim,et al.  Effective contamination control strategies facilitating axenic cultivation of Haematococcus pluvialis: Risks and Challenges. , 2021, Bioresource technology.

[3]  Penghui Zhao,et al.  A joint strategy comprising melatonin and 3-methyladenine to concurrently stimulate biomass and astaxanthin hyperaccumulation by Haematococcus pluvialis. , 2021, Bioresource Technology.

[4]  Feng Chen,et al.  Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. , 2021, Bioresource technology.

[5]  N. Xu,et al.  Transcriptome analysis reveals pathways responsible for the promoting effect of sucrose on astaxanthin accumulation in Haematococcus pluvialis under high light condition , 2021 .

[6]  Benyong Han,et al.  Gamma-aminobutyric acid facilitates the simultaneous production of biomass, astaxanthin and lipids in Haematococcus pluvialis under salinity and high-light stress conditions. , 2020, Bioresource technology.

[7]  V. Henríquez,et al.  Biotechnology applied to Haematococcus pluvialis Fotow: challenges and prospects for the enhancement of astaxanthin accumulation , 2020, Journal of Applied Phycology.

[8]  F. Zhang,et al.  Ultrastructural changes of Haematococcus pluvialis (Chlorophyta) in process of astaxanthin accumulation and cell damage under condition of high light with acetate , 2020 .

[9]  N. Xu,et al.  Comparative transcriptome analysis unveils mechanisms underlying the promoting effect of potassium iodide on astaxanthin accumulation in Haematococcus pluvialis under high light stress , 2020, Aquaculture.

[10]  Jun Cheng,et al.  Simultaneous promotion of photosynthesis and astaxanthin accumulation during two stages of Haematococcus pluvialis with ammonium ferric citrate. , 2020, The Science of the total environment.

[11]  Jian Li,et al.  Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. , 2020, Biotechnology advances.

[12]  Yoon-E Choi,et al.  Astaxanthin biosynthesis promotion with pH shock in the green microalga, Haematococcus lacustris. , 2020, Bioresource technology.

[13]  N. Xu,et al.  Transcriptomic analysis unveils survival strategies of autotrophic Haematococcus pluvialis against high light stress , 2019, Aquaculture.

[14]  S. Sim,et al.  Rapid selection of astaxanthin-hyperproducing Haematococcus mutant via azide-based colorimetric assay combined with oil-based astaxanthin extraction. , 2018, Bioresource technology.

[15]  Jianguo Liu,et al.  Exogenous sodium acetate enhances astaxanthin accumulation and photoprotection in Haematococcus pluvialis at the non-motile stage , 2018, Journal of Applied Phycology.

[16]  N. Smirnoff,et al.  ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. , 2018, Free radical biology & medicine.

[17]  M. Tao,et al.  Effects of selenite on green microalga Haematococcus pluvialis: Bioaccumulation of selenium and enhancement of astaxanthin production. , 2017, Aquatic toxicology.

[18]  Jay J. Cheng,et al.  Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products , 2016, Front. Plant Sci..

[19]  İ. Ak,et al.  An alternative approach to the traditional mixotrophic cultures of Haematococcus pluvialis Flotow (Chlorophyceae). , 2010, Journal of microbiology and biotechnology.

[20]  Chul-Woong Cho,et al.  Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis , 2006 .