Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhöffer–van der Pol oscillator

In this article, projective synchronization of double–scroll attractor of an extended Bonöffer–van der Pol oscillator (BVPO) is considered via the backstepping and active control techniques. In each synchronization scheme, a single control function is designed to achieve projective synchronization between two Bonhöffer–van der Pol oscillator evolving from different initial conditions. To obtain a single control function via the active control, the coefficient of the error dynamics is chosen such that the number of control functions is reduced from three to one, thereby, reducing control function complexity in design. The results show that the transient error dynamics convergence and synchronization time are achieved faster via the backstepping than that of the active control technique. However, the control function obtained via the active control is simpler with a more stable synchronization time and hence, it is more suitable for practical implementation. Numerical simulations are presented to confirm the effectiveness of the analytical results.

[1]  Zhengqiang Zhang,et al.  Adaptive synchronization of single-degree-of-freedom oscillators with unknown parameters , 2012, Appl. Math. Comput..

[2]  Er-Wei Bai,et al.  Synchronization of two Lorenz systems using active control , 1997 .

[3]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[4]  Shanmuganathan Rajasekar,et al.  Algorithms for controlling chaotic motion: application for the BVP oscillator , 1993 .

[5]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[6]  Yan Xu,et al.  Chaos synchronization and parameter estimation of single-degree-of-freedom oscillators via adaptive control , 2010 .

[7]  Johan A. K. Suykens,et al.  Cellular Neural Networks, Multi-Scroll Chaos and Synchronization , 2005 .

[8]  Lixin Tian,et al.  Feedback control and adaptive control of the energy resource chaotic system , 2007 .

[9]  A. N. Njah Synchronization via active control of identical and non-identical Φ6 chaotic oscillators with external excitation , 2009 .

[10]  M Ramesh,et al.  Chaos control of Bonhoeffer–van der Pol oscillator using neural networks , 2001 .

[11]  Zheng,et al.  Generalized synchronization versus phase synchronization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Yu Si-Min,et al.  Generation and synchronization of N-scroll chaotic and hyperchaotic attractors in fourth-order systems , 2004 .

[13]  Raúl Toral,et al.  Anticipated synchronization: a metaphorical linear view. , 2004, Chaos.

[14]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[15]  Ming-Jyi Jang,et al.  Sliding Mode Control of Chaos in the cubic Chua's Circuit System , 2002, Int. J. Bifurc. Chaos.

[16]  Hao Zhang,et al.  Controlling and tracking hyperchaotic Rössler system via active backstepping design , 2005 .

[17]  Liang Wu,et al.  Anticipating and Lag Synchronization in Chaotic Laser System , 2004 .

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  Yao-Chen Hung,et al.  Synchronization of Uncertain hyperchaotic and Chaotic Systems by Adaptive Control , 2008, Int. J. Bifurc. Chaos.

[20]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[21]  J. Paydarfar,et al.  Phase resetting of the respiratory oscillator by carotid sinus nerve stimulation in cats , 1998, The Journal of physiology.

[22]  Wei Xu,et al.  Global synchronization of two parametrically excited systems using active control , 2006 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Guiqiong Xu,et al.  The soliton solutions, dromions of the Kadomtsev–Petviashvili and Jimbo–Miwa equations in (3 + 1)-dimensions , 2006 .

[25]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[26]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[27]  Jin Han-min,et al.  The anisotropy of Gd–Fe exchange interaction for Gd 2 Fe 17 and Gd 2 Fe 17 H 3 , 2004 .

[28]  CHUA Cellular Neural Networks : Theory LEON 0 , 2004 .

[29]  Uchechukwu E. Vincent,et al.  Synchronization and anti-synchronization of chaos in an extended Bonhöffer–van der Pol oscillator using active control , 2009 .

[30]  Hao Shen,et al.  Adaptive stabilization of uncertain unified chaotic systems with nonlinear input , 2011, Appl. Math. Comput..

[31]  J. Rogers Chaos , 1876 .

[32]  Tetsushi Ueta,et al.  Stable torus and its bifurcation phenomena in a simple three-dimensional autonomous circuit , 2006 .

[33]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[34]  L.O. Chua,et al.  Cellular neural networks , 1993, 1988., IEEE International Symposium on Circuits and Systems.