HERSCHEL-PACS OBSERVATIONS OF FAR-IR CO LINE EMISSION IN NGC 1068: HIGHLY EXCITED MOLECULAR GAS IN THE CIRCUMNUCLEAR DISK

We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the Jupper = 14–30 (Eupper/kB = 580–2565 K) range, all of which are consistent with arising from within the central 10″ (700 pc). The detected transitions are modeled as arising from two different components: a moderate-excitation (ME) component close to the galaxy systemic velocity and a high-excitation (HE) component that is blueshifted by ∼80 km s−1. We employ a large velocity gradient model and derive nH2 ∼ 105.6 cm−3, Tkin ∼ 170 K, and MH2 ∼ 106.7 M☉ for the ME component and nH2 ∼ 106.4 cm−3, Tkin ∼ 570 K, and MH2 ∼ 105.6 M☉ for the HE component, although for both components the uncertainties in the density and mass are ±(0.6–0.9) dex. Both components arise from denser and possibly warmer gas than traced by low-J CO transitions, and the ME component likely makes a significant contribution to the mass budget in the nuclear region. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution and find that the ME transitions are consistent with these lines arising in the ∼200 pc diameter ring of material traced by H2 1–0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H2 ring, but a better kinematic match is found with a clump of infalling gas ∼40 pc north of the active galactic nucleus (AGN). We consider potential heating mechanisms and conclude that X-ray- or shock heating of both components is viable, while far-UV heating is unlikely. We discuss the prospects of placing the HE component near the AGN and conclude that while the moderate thermal pressure precludes an association with the ∼1 pc radius H2O maser disk, the HE component could potentially be located only a few parsecs more distant from the AGN and might then provide the NH ∼ 1025 cm−2 column obscuring the nuclear hard X-rays. Finally, we also report sensitive upper limits extending up to Jupper = 50, which place constraints on a previous model prediction for the CO emission from the X-ray obscuring torus.

[1]  G. J. Stacey,et al.  MID-J CO EMISSION FROM NGC 891: MICROTURBULENT MOLECULAR SHOCKS IN NORMAL STAR-FORMING GALAXIES , 2011, 1108.3213.

[2]  Christine D. Wilson,et al.  OBSERVATIONS OF Arp 220 USING HERSCHEL-SPIRE: AN UNPRECEDENTED VIEW OF THE MOLECULAR GAS IN AN EXTREME STAR FORMATION ENVIRONMENT , 2011, 1106.5054.

[3]  R. Neri,et al.  SUBMILLIMETER ARRAY/PLATEAU DE BURE INTERFEROMETER MULTIPLE LINE OBSERVATIONS OF THE NEARBY SEYFERT 2 GALAXY NGC 1068: SHOCK-RELATED GAS KINEMATICS AND HEATING IN THE CENTRAL 100 pc? , 2011, 1105.6089.

[4]  J. Bock,et al.  THE DENSE MOLECULAR GAS IN THE CIRCUMNUCLEAR DISK OF NGC 1068 , 2011, 1102.3915.

[5]  R. Meijerink,et al.  H3O+ line emission from starbursts and AGNs , 2011, 1101.0682.

[6]  A. Merloni,et al.  THREE-YEAR SWIFT–BAT SURVEY OF ACTIVE GALACTIC NUCLEI: RECONCILING THEORY AND OBSERVATIONS? , 2010, 1012.0302.

[7]  G. P. Forêts,et al.  Excitation and emission of H2, CO and H2O molecules in interstellar shock waves , 2010 .

[8]  J. Stutzki,et al.  Excitation of the molecular gas in the nuclear region of M 82 , 2010, 1006.5006.

[9]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[10]  G. Savini,et al.  Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231 , 2010, 1005.2877.

[11]  M. Sauvage,et al.  Probing the molecular interstellar medium of M82 with Herschel-SPIRE spectroscopy ? , 2010, 1005.1877.

[12]  R. Neri,et al.  Molecular gas chemistry in AGN - II. High-resolution imaging of SiO emission in NGC 1068: shocks or XDR? , 2010, 1005.1263.

[13]  R. C. Forrey,et al.  ROTATIONAL QUENCHING OF CO DUE TO H2 COLLISIONS , 2010, 1004.3923.

[14]  R. Klessen,et al.  Probing high-redshift quasars with ALMA. I. Expected observables and potential number of sources , 2010, 1001.2118.

[15]  K. Meisenheimer,et al.  Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster , 2009, 0912.4677.

[16]  M. Spaans,et al.  MOLECULAR GAS DISK STRUCTURES AROUND ACTIVE GALACTIC NUCLEI , 2009 .

[17]  F. Panessa,et al.  The fraction of compton-thick sources in an integral complete AGN sample , 2009, 0906.5544.

[18]  N. Abel,et al.  DUST-BOUNDED ULTRALUMINOUS INFRARED GALAXIES: MODEL PREDICTIONS FOR INFRARED SPECTROSCOPIC SURVEYS , 2009, 0903.4643.

[19]  Walter Jaffe,et al.  Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust , 2009, 0901.1306.

[20]  F. Israel,et al.  CI and CO in nearby galaxy centers. The bright galaxies NGC 1068 (M 77), NGC 2146, NGC 3079, NGC 4826 (M 64), and NGC 7469 , 2008, 0811.4058.

[21]  R. Genzel,et al.  MOLECULAR GAS STREAMERS FEEDING AND OBSCURING THE ACTIVE NUCLEUS OF NGC 1068 , 2008, 0809.4943.

[22]  R. Meijerink,et al.  Mechanical feedback in the molecular ISM of luminous IR galaxies , 2008, 0807.1728.

[23]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008, 0806.0512.

[24]  C. B. Markwardt,et al.  New Indicators for AGN Power: The Correlation between [O IV] 25.89 μm and Hard X-Ray Luminosity for Nearby Seyfert Galaxies , 2008, 0804.1147.

[25]  R. Meijerink,et al.  On the Detection of High-Redshift Black Holes with ALMA through CO and H2 Emission , 2008, 0803.2397.

[26]  R. Neri,et al.  A Multi-Transition HCN and HCO+ Study of 12 Nearby Active Galaxies: Active Galactic Nucleus versus Starburst Environments , 2007, 0712.0319.

[27]  Az,et al.  Warm Molecular Hydrogen in the Spitzer SINGS Galaxy Sample , 2007, 0707.0395.

[28]  P. P. van der Werf,et al.  First CO J = 6-5 and J = 4-3 Detections in Local ULIRGs: The Dense Gas in Markarian 231 and Its Cooling Budget , 2007, 0706.0811.

[29]  R. Genzel,et al.  A Close Look at Star Formation around Active Galactic Nuclei , 2007, 0704.1374.

[30]  R. Meijerink,et al.  Diagnostics of irradiated dense gas in galaxy nuclei. II. A grid of XDR and PDR models , 2006, astro-ph/0610360.

[31]  N. Kobayashi,et al.  Distribution of Dust Clouds around the Central Engine of NGC 1068 , 2006, astro-ph/0605478.

[32]  G. Weigelt,et al.  Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068 , 2006, astro-ph/0602494.

[33]  L. Tacconi-Garman,et al.  Molecular Hydrogen Excitation around Active Galactic Nuclei , 2005, astro-ph/0507062.

[34]  M. Spaans,et al.  THE EXCITATION OF WATER IN THE S140 PHOTON DOMINATED REGION. D. R. Poelman , 2005, astro-ph/0506111.

[35]  M. Malkan,et al.  The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068 , 2005, astro-ph/0501024.

[36]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[37]  Astronomy,et al.  Molecular hydrogen and (Fe II) in Active Galactic Nuclei , 2004, 1301.0491.

[38]  C. Kramer,et al.  Emission of CO, C i, and C ii in W3 Main , 2004, astro-ph/0406141.

[39]  S. Baum,et al.  The Parsec-Scale Radio Structure of NGC 1068 and the Nature of the Nuclear Radio Source , 2004, astro-ph/0406062.

[40]  M. Schoeller,et al.  The central dusty torus in the active nucleus of NGC 1068 , 2004, Nature.

[41]  N. Rodríguez-Fernández,et al.  Molecular gas chemistry in AGN I. The IRAM 30 m survey of NGC 1068 , 2004, astro-ph/0402556.

[42]  G. Granato,et al.  Revisiting the location and environment of the central engine in NGC 1068 , 2003, astro-ph/0304293.

[43]  J. Lee,et al.  Testing the Seyfert unification theory: Chandra HETGS observations of NGC 1068 , 2002, astro-ph/0211406.

[44]  Cambridge,et al.  Non-Keplerian rotation in the nucleus of NGC 1068 , 2002, astro-ph/0211113.

[45]  J. Krolik,et al.  The X-Ray Reflectors in the Nucleus of the Seyfert Galaxy NGC 1068 , 2002, astro-ph/0208158.

[46]  A. Sternberg,et al.  Mid-Infrared line diagnostics of active galaxies - A spectroscopic AGN survey with ISO-SWS , 2002, astro-ph/0207381.

[47]  D. Alloin,et al.  Near-IR 2D-spectroscopy of the 4''x 4'' region around the Active Galactic Nucleus of NGC 1068 with ISAAC/VLT , 2002, astro-ph/0207010.

[48]  R. Genzel,et al.  An ISO-SWS survey of molecular hydrogen in Starburst and Seifert galaxies , 2002, astro-ph/0206135.

[49]  John Ward,et al.  A 12CO J = 6-5 Map of M82: The Significance of Warm Molecular Gas , 2001 .

[50]  M. Prieto,et al.  The Nature of the Nuclear H2O Masers of NGC 1068: Reverberation and Evidence for a Rotating Disk Geometry , 2001, astro-ph/0104083.

[51]  M. Sauvage,et al.  Mid-Infrared observations of NGC 1068 with the Infrared Space Observatory , 2001 .

[52]  P. Goldsmith Molecular Depletion and Thermal Balance in Dark Cloud Cores , 2000 .

[53]  R. Genzel,et al.  Bars and Warps Traced by the Molecular Gas in the Seyfert 2 Galaxy NGC 1068 , 1999, astro-ph/9911488.

[54]  A. Sternberg,et al.  ISO-SWS Spectroscopy of NGC 1068 , 2000, astro-ph/0002008.

[55]  J. Cernicharo,et al.  Extended Far-Infrared CO Emission in the OMC-1 Core of Orion , 1999, Astrophysical Journal.

[56]  E. Seaquist,et al.  The State of the Molecular Gas in a Luminous Starburst/Seyfert 2 Galaxy: NGC 1068 Revisited , 1999, astro-ph/9901394.

[57]  R. Davies,et al.  Star formation in the circumnuclear environment of NGC 1068 , 1998, astro-ph/9806345.

[58]  J. Bland-Hawthorn,et al.  The Ringberg Standards for NGC 1068 , 1997 .

[59]  A. Fabian,et al.  The iron K line complex in NGC1068: implications for X-ray reflection in the nucleus , 1997, astro-ph/9703159.

[60]  P. Maloney X-Ray Excitation of Molecular Hydrogen and [Fe II] Emission in NGC 1068 , 1997 .

[61]  F. Macchetto,et al.  Jet-Driven Motions in the Narrow-Line Region of NGC 1068 , 1997, astro-ph/9801253.

[62]  R. Antonucci,et al.  VLBI Imaging of Water Maser Emission from the Nuclear Torus of NGC 1068 , 1996, astro-ph/9609082.

[63]  A. Tielens,et al.  X-Ray--irradiated Molecular Gas. I. Physical Processes and General Results , 1996 .

[64]  S. Baum,et al.  The Subarcsecond Radio Structure in NGC 1068. I. Observations and Results , 1996 .

[65]  N. Scoville,et al.  High-Resolution CO Observations of the Ultraluminous Infrared Galaxy Markarian 231 , 1996 .

[66]  M. Kaufman,et al.  Far-Infrared Water Emissions from Magnetohydrodynamic Shock Waves , 1996 .

[67]  L. Blitz,et al.  High-Resolution Berkeley-Illinois-Maryland Association Observations of CO, HCN, and 13CO in NGC 1068 , 1995 .

[68]  D. Neufeld,et al.  The Mass Accretion Rate through the Masing Molecular Disk in the Active Galaxy NGC 4258 , 1995 .

[69]  A. Sternberg,et al.  HCN and CO in the nucleus of NGC 1068 , 1994 .

[70]  D. Neufeld,et al.  Water maser emission from X-ray-heated circumnuclear gas in active galaxies , 1994 .

[71]  William B. Sparks,et al.  HST/FOC imaging of the narrow-line region of NGC 1068 , 1994 .

[72]  E. Pier,et al.  The intrinsic nuclear spectrum of NGC 1068 , 1994 .

[73]  H. Mouri Molecular Hydrogen Emission in Galaxies: Determination of Excitation Mechanism , 1994 .

[74]  R. Siebenmorgen,et al.  Subarcsecond mid-infrared imaging of warm dust in the narrow-line region of NGC 1068 , 1993 .

[75]  R. Genzel,et al.  The Nature of the dense obscuring material in the nucleus of NGC 1068 , 1993 .

[76]  S. Myers,et al.  High-resolution aperture synthesis of molecular gas in NGC 1068 , 1991 .

[77]  A. Sternberg,et al.  High-resolution imaging of Brackett-gamma and H2 1-0 S(1) emission in the Seyfert galaxy NGC 1068 , 1991 .

[78]  Julian H. Krolik,et al.  The physical state of the obscuring torus in Seyfert galaxies , 1989 .

[79]  D. Hollenbach,et al.  Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .

[80]  A. Sternberg,et al.  The infrared response of molecular hydrogen gas to ultraviolet radiation: high-density regions , 1989 .

[81]  M. Joy,et al.  Infrared emission from young stars in the nucleus of M82 , 1987 .

[82]  Andrew J. S. Wilson,et al.  A radiative bow shock wave (?) driven by nuclear ejecta in a Seyfert galaxy , 1987 .

[83]  J. Miller,et al.  Evidence for a highly polarized continuum in the nucleus of NGC 1068 , 1983 .

[84]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[85]  D. Harper,et al.  Galaxies and far-infrared emission , 1980 .

[86]  Rodger I. Thompson,et al.  The 2 - 2.5 micron spectrum of NGC 1068: a detection of extragalactic molecular hydrogen. , 1978 .

[87]  F. Combes,et al.  Mapping the Galaxy and Nearby Galaxies , 2008 .

[88]  A. Sternberg,et al.  NEAR-INFRARED SPECTROSCOPIC IMAGING OF THE CIRCUMNUCLEAR ENVIRONMENT OF NGC 1068 , 1994 .

[89]  R. Klein,et al.  On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds , 1994 .