Optimal sensor placement for uncertain inverse problem of structural parameter estimation

Abstract This paper presents an optimal sensor placement approach for the uncertain inverse problem of structural parameter estimation, aiming to mitigate the ill-posedness problem that often exists in inverse procedures. The key idea is to select the sensor positions with the most sensitive measured responses to the structural parameters and the least correlated measured responses at the selected positions. Our optimization strategy is to convert the traditional minimum variance criterion of structural parameters to be identified into a new maximum independent mean-variance criterion of structural responses, so that the complex optimal sensor placement problem is transformed into a forward uncertainty propagation problem. Then, two orthogonal matching pursuit (OMP) methods based on Monte Carlo simulation (MCS) and dimension reduction integration (DRI) method are presented in this work, in which the MCS and the much more efficient DRI method are employed to solve the forward uncertainty propagation problem, and the OMP methods in sample form and moment form are developed to determine the optimal sensor placement for the identification procedure by considering the uncertainties in the measured responses. A Markov Chain Monte Carlo algorithm is adopted to identify the distributions of structural parameters eventually. Numerical and experimental examples are presented to verify the practicability and effectiveness of the proposed methods.

[1]  Lorenzo Macorini,et al.  Optimal sensor placement for structural parameter identification , 2016, Structural and Multidisciplinary Optimization.

[2]  Fredrik Lindsten,et al.  Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo , 2017, ArXiv.

[3]  O. C. Zienkiewicz,et al.  A novel boundary infinite element , 1983 .

[4]  Volkmar Zabel,et al.  An automatic mode pairing strategy using an enhanced modal assurance criterion based on modal strain energies , 2010 .

[5]  M. Gude,et al.  Multi-sensor system for in situ shape monitoring and damage identification of high-speed composite rotors , 2016 .

[6]  Sven Ehrich,et al.  On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas , 2002 .

[7]  Daniel C. Kammer Sensor placement for on-orbit modal identification and correlation of large space structures , 1991 .

[8]  P. H. Kirkegaard,et al.  On the optimal location of sensors for parametric identification of linear structural systems , 1994 .

[9]  Chun Jie Wang,et al.  A Monte Carlo simulation based inverse propagation method for stochastic model updating , 2015 .

[10]  Wei Chen,et al.  Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty , 2005 .

[11]  F. Udwadia Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Systems , 1994 .

[12]  Ting-Hua Yi,et al.  Optimal sensor placement for structural health monitoring based on multiple optimization strategies , 2011 .

[13]  Paul N. Swarztrauber,et al.  On Computing the Points and Weights for Gauss-Legendre Quadrature , 2002, SIAM J. Sci. Comput..

[14]  Liangsheng Wang,et al.  Structural damage identification for thin plates using smart piezoelectric transducers , 2005 .

[15]  Jie Liu,et al.  Sparse identification of time-space coupled distributed dynamic load , 2021 .

[16]  Jie Liu,et al.  A general frame for uncertainty propagation under multimodally distributed random variables , 2020 .

[17]  Jie Liu,et al.  Correlation propagation for uncertainty analysis of structures based on a non-probabilistic ellipsoidal model , 2020 .

[18]  Zhangzhi Cen,et al.  An integrated parameter identification method combined with sensor placement design , 2007 .

[19]  Dejie Yu,et al.  Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method , 2015 .

[20]  Carl Erik Fröberg,et al.  Introduction to Numerical Analysis , 1969 .

[21]  Dongsheng Li,et al.  The connection between effective independence and modal kinetic energy methods for sensor placement , 2007 .

[22]  Chao Jiang,et al.  Parallelotope-formed evidence theory model for quantifying uncertainties with correlation , 2020 .

[23]  Costas Papadimitriou,et al.  Optimal sensor placement methodology for parametric identification of structural systems , 2004 .

[24]  A. Meher Prasad,et al.  High‐dimensional model representation for structural reliability analysis , 2009 .

[25]  David K. E. Green,et al.  Efficient Markov Chain Monte Carlo for combined Subset Simulation and nonlinear finite element analysis , 2017 .

[26]  C. Manohar,et al.  Combined state and parameter identification of nonlinear structural dynamical systems based on Rao-Blackwellization and Markov chain Monte Carlo simulations , 2018 .

[27]  Zhenyu Yang,et al.  Robust Optimal Sensor Placement for Uncertain Structures With Interval Parameters , 2018, IEEE Sensors Journal.

[28]  Jyrki Kullaa,et al.  Detection, identification, and quantification of sensor fault in a sensor network , 2013 .

[29]  Hong-Nan Li,et al.  Load dependent sensor placement method: Theory and experimental validation , 2012 .

[30]  C. Guedes Soares,et al.  Optimal sensor placement and assessment for modal identification , 2018, Ocean Engineering.

[31]  Paul D. Arendt,et al.  Quantification of model uncertainty: Calibration, model discrepancy, and identifiability , 2012 .

[32]  Martin Dalgaard Ulriksen,et al.  Sensor Placement for Modal Parameter Subset Estimation: A Frequency Response-based Approach , 2016 .

[33]  Chen Yang,et al.  Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index , 2020 .

[34]  Charles R. Pickrel A PRACTICAL APPROACH TO MODAL PRETEST DESIGN , 1999 .

[35]  Clark R. Dohrmann,et al.  A modal test design strategy for model correlation , 1994 .

[36]  Urmila M. Diwekar,et al.  A multi-objective optimization approach to optimal sensor location problem in IGCC power plants , 2016 .

[37]  Chen Yang,et al.  An adaptive sensor placement algorithm for structural health monitoring based on multi-objective iterative optimization using weight factor updating , 2021 .

[38]  Guirong Liu,et al.  Smoothed Finite Element Methods (S-FEM): An Overview and Recent Developments , 2018 .

[39]  Daniel C. Kammer,et al.  Mass-weighting methods for sensor placement using sensor set expansion techniques , 2008 .

[40]  Rajib Chowdhury,et al.  Hybrid High Dimensional Model Representation for reliability analysis , 2009 .

[41]  An-Pan Cherng OPTIMAL SENSOR PLACEMENT FOR MODAL PARAMETER IDENTIFICATION USING SIGNAL SUBSPACE CORRELATION TECHNIQUES , 1999 .

[42]  Jie Liu,et al.  Uncertain inverse method by the sequential FOSM and its application on uncertainty reconstruction of vehicle–pedestrian collision accident , 2020 .

[43]  M. Papadopoulos,et al.  Sensor placement methodologies for dynamic testing , 1998 .

[44]  Ivano Benedetti,et al.  A fast BEM for the analysis of damaged structures with bonded piezoelectric sensors , 2010 .

[45]  Rafael Castro-Triguero,et al.  Robustness of optimal sensor placement under parametric uncertainty , 2013 .

[46]  S. Rahman,et al.  A generalized dimension‐reduction method for multidimensional integration in stochastic mechanics , 2004 .

[47]  Cyrille Stephan,et al.  Sensor placement for modal identification , 2012 .

[48]  Sankaran Mahadevan,et al.  Sensor placement for calibration of spatially varying model parameters , 2017, J. Comput. Phys..

[49]  C. Papadimitriou,et al.  The effect of prediction error correlation on optimal sensor placement in structural dynamics , 2012 .

[50]  Xinyu Geng,et al.  Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy , 2019, Mechanical Systems and Signal Processing.

[51]  C. Papadimitriou Pareto optimal sensor locations for structural identification , 2005 .

[52]  Wei Liu,et al.  Optimal sensor placement for spatial lattice structure based on genetic algorithms , 2008 .

[53]  Hongnan Li,et al.  A modified monkey algorithm for optimal sensor placement in structural health monitoring , 2012 .

[54]  S. Rahman,et al.  A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics , 2004 .

[55]  A. Swiercz,et al.  Convex relaxation for efficient sensor layout optimization in large‐scale structures subjected to moving loads , 2020, Comput. Aided Civ. Infrastructure Eng..