Circular Polarization and Nonreciprocal Propagation in Magnetic Media

The polarization of electromagnetic signals is an important feature in the design of modern radar and telecommunications. Standard electromagnetic theory readily shows that a linearly polarized plane wave propagating in free space consists of two equal but counter-rotating components of circular polarization. In magnetized media, these circular modes can be arranged to produce the nonreciprocal propagation effects that are the basic properties of isolator and circulator devices. Independent phase control of right-hand (+) and left-hand (–) circular waves is accomplished by splitting their propagation velocities through differences in the

[1]  David C. Hutchings,et al.  Prospects for the implementation of magneto-optic elements in optoelectronic integrated circuits: a personal perspective , 2003 .

[2]  M. Guyot,et al.  MAGNETIC AND MAGNETO-OPTIC PROPERTIES OF ORTHOFERRITE THIN FILMS GROWN BY PULSED-LASER DEPOSITION , 1999 .

[3]  C. Ross,et al.  Faraday rotation, ferromagnetism, and optical properties in Fe-doped BaTiO3 , 2005 .

[4]  R. A. Lieberman,et al.  Broadband magneto‐optic waveguide isolator , 1990 .

[5]  Masaaki Tanaka,et al.  Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters , 2001 .

[6]  P. Hansen,et al.  Magnetic and magneto-optical properties of garnet films , 1984 .

[7]  William D. Fitzgerald A 35-GHz beam waveguide system for the millimeter-wave radar , 1992 .

[8]  G. Dionne,et al.  Spectral origins of giant Faraday rotation and ellipticity in Bi‐substituted magnetic garnets , 1993 .

[9]  Magneto-optical garnet films made by reactive sputtering , 2000 .

[10]  R. Atkinson,et al.  OPTICAL ABSORPTION AND FARADAY ROTATION OF BARIUM HEXAFERRITE FILMS PREPARED BY LASER ABLATION DEPOSITION , 1998 .

[11]  Miguel Levy,et al.  The on-chip integration of magnetooptic waveguide isolators , 2002 .

[12]  Quasi-optical reflection circulator , 1993, 1993 IEEE MTT-S International Microwave Symposium Digest.

[13]  R.M. Osgood,et al.  Integrated optical isolators with sputter-deposited thin-film magnets , 1996, IEEE Photonics Technology Letters.

[14]  Michael Webb A mm-wave four-port quasi-optical circulator , 1991 .

[15]  G. Dionne,et al.  Molecular‐orbital analysis of magneto‐optical Bi‐O‐Fe hybrid excited states , 1994 .

[16]  Yasuyuki Inoue,et al.  A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit , 1996 .

[17]  Bethanie J. H. Stadler,et al.  Integration of magneto-optical garnet films by metal-organic chemical vapor deposition , 2002 .

[18]  Jerald A. Weiss,et al.  Nonreciprocal magneto-optics for millimeter waves , 1988 .

[19]  A. Grishin,et al.  Epitaxial Bi3Fe5O12(001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques , 2000 .

[20]  C. Ross,et al.  Microstructure and optical properties of pulsed-laser-deposited iron oxide films , 2004, IEEE Transactions on Magnetics.

[21]  Simple derivation of four-level permittivity relations for magneto-optical applications , 2005 .

[22]  J. P. Remeika,et al.  Ultraviolet Magneto-Optical Properties of Single-Crystal Orthoferrites, Garnets, and Other Ferric Oxide Compounds , 1969 .

[23]  Benjamin Lax,et al.  Quasi-optical ferrite reflection circulator , 1993 .

[24]  Joshua Cohn,et al.  Ferroelectric and ferrimagnetic iron-doped thin-film BaTiO3: Influence of iron on physical properties , 2002 .

[25]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[26]  G. D. ADAM,et al.  Physical Principles of Magnetism , 1966, Nature.

[27]  H. J. Hagger,et al.  Microwave Ferrites And Ferrimagnetics , 1962 .

[28]  M. Abe,et al.  Giant Faraday Rotation of Ce-Substituted YIG Films Epitaxially Grown by RF Sputtering , 1988 .

[29]  R. E. Scotti,et al.  Etch‐tuned ridged waveguide magneto‐optic isolator , 1990 .

[30]  T. Shintaku Integrated optical isolator based on nonreciprocal higher‐order mode conversion , 1995 .

[31]  Demetri Psaltis,et al.  Two-Dimensional Magneto-Optic Spatial Light Modulator For Signal Processing , 1983 .

[32]  田中 惟雄 Lax and Button: Microwave Ferrites and Ferrimagnetics, McGraw-Hill, 1962, 752頁, 16×24cm, 6,600円 , 1963 .

[33]  N. Bloembergen Magnetic Resonance in Ferrites , 1956, Proceedings of the IRE.

[34]  Application of permittivity tensor for accurate interpretation of magneto‐optical spectra , 1993 .