Impact of intraband relaxation on the performance of a quantum-dot laser

Measurements on 1.3-/spl mu/m quantum-dot lasers are presented that reveal a number of interesting effects. 1) At high bias, a second lasing line appears, corresponding to the excited state transition. 2) The linewidth enhancement factor increases dramatically above threshold. 3) The modulation performance is degraded when the second lasing line appears. A comprehensive numerical model is developed to explain this behavior. We attribute it to incomplete gain clamping above threshold. This is caused by a combination of the finite intraband relaxation time and the limited density of states.

[1]  P. Bhattacharya,et al.  Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature , 2002 .

[2]  Marc Ilegems,et al.  Matrix effects on the structural and optical properties of InAs quantum dots , 2001 .

[3]  A. Stintz,et al.  Gain and linewidth enhancement factor in InAs quantum-dot laser diodes , 1999, IEEE Photonics Technology Letters.

[4]  A. Fiore,et al.  Comparison of radiative properties of InAs quantum dots and GaInNAs quantum wells emitting around 1.3 μm , 2002 .

[5]  N. N. Ledentsov,et al.  Midinfrared emission from near-infrared quantum-dot lasers , 2000 .

[6]  Leonard,et al.  State filling and time-resolved photoluminescence of excited states in InxGa1-xAs/GaAs self-assembled quantum dots. , 1996, Physical review. B, Condensed matter.

[7]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[8]  Andreas Hoffmann,et al.  Excited states and energy relaxation in stacked InAs/GaAs quantum dots , 1998 .

[9]  D. Deppe,et al.  Low-threshold oxide-confined 1.3-μm quantum-dot laser , 2000, IEEE Photonics Technology Letters.

[10]  P. Bhattacharya,et al.  Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature , 2002 .

[11]  Wolfgang Werner Langbein,et al.  Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 μm , 2000 .

[12]  Andrea Fiore,et al.  Simultaneous two-state lasing in quantum-dot lasers , 2003 .

[13]  N. Holonyak,et al.  Planar native‐oxide index‐guided AlxGa1−xAs‐GaAs quantum well heterostructure lasers , 1991 .

[14]  Hajime Shoji,et al.  Effect of phonon bottleneck on quantum-dot laser performance , 1997 .

[15]  D. Deppe,et al.  1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .

[16]  Ryan,et al.  Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells. , 1989, Physical review letters.

[17]  M. Aoki,et al.  Quantum size effect on longitudinal spatial hole burning in MQW lambda /4-shifted DFB lasers , 1991 .

[18]  K. Vahala,et al.  Measurement of the linewidth enhancement factor α of semiconductor lasers , 1983 .

[19]  K. Nishi,et al.  Low chirp observed in directly modulated quantum dot lasers , 2000, IEEE Photonics Technology Letters.

[20]  Sanjay Krishna,et al.  Intersubband gain and stimulated emission in long-wavelength (/spl lambda/=13 /spl mu/m) intersubband In(Ga)As-GaAs quantum-dot electroluminescent devices , 2001 .

[21]  A. Fiore,et al.  Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications , 2002 .