Approximation Theory of Multivariate Spline Functions in Sobolev Spaces

In this paper we study some approximation theory questions which arise from the analysis of the discretization error associated with the use of the Rayleigh-Ritz-Galerkin method for approximating the solutions to various types of boundary value problems, cf. [13, [2], [33, [43, [7], [8], [93, [12], [143, [18], [19], [20] and [22]. In particular, we consider upper and lower bounds for the error in approximation of certain families of functions in Sobolev spaces, cf. [15], by functions in finite-dimensional "polynomial spline types" subspaces, cf. [16]. In doing this, we directly generalize, improve, and extend the corresponding results of[1], [17], [18], [19], [20], and [21]. Throughout this paper, the symbol K will be used repeatedly to denote a positive constant, not necessarily the same at each occurrence and the symbol μ will be used repeatedly to denote a nonnegative, continuous function on [0,∞], not necessarily the same at each occurrence.