Scattering of light by large Saharan dust particles in a modified ray optics approximation

[1] Single scattering by randomly oriented Saharan sand, silt, and clay particles is studied at 441.6 nm wavelength. Numerical simulations using the ray optics approximation and the Lorenz-Mie theory are compared with laboratory measurements of scattering matrix elements reported in the literature. The ray optics approximation is modified with ad hoc simple schemes of Lambertian surface elements and internal screens to study the effect of small-scale surface roughness and internal structures, respectively. Two different Lambertian reflection/refraction matrices with varying depolarization characteristics are applied. Model particle shapes are based on a tentative shape analysis of real Saharan particles. It is found that the traditional ray optics approximation agrees well with measurements only if unrealistically spiky particle shapes and an imaginary part of the refractive index (Im(m)) that is rather small compared with the typical values given in the literature are used. When the Lambertian schemes are applied, the agreement with measurements clearly improves. More importantly, good agreement can then be achieved using realistic particle shapes; this too requires a rather small Im(m). If Im(m) values corresponding to typical values in the literature are used, good fits can be achieved, but unrealistically spiky particle shapes have to be used. Our findings also indicate that sophisticated single-scattering modeling is important even below the ray optics domain. Finally, we demonstrate the importance of sophisticated single-scattering modeling for radiative flux and radiance calculations.

[1]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[2]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[3]  K. Muinonen,et al.  Spectral estimation of Gaussian random circles and spheres , 2001 .

[4]  Hester Volten,et al.  Experimental determination of scattering matrices of randomly oriented fly ash and clay particles at 442 and 633 nm , 2001 .

[5]  Hester Volten,et al.  Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm , 2001 .

[6]  S. Kaasalainen,et al.  Shadowing effect in clusters of opaque spherical particles , 2001 .

[7]  A. Sihvola,et al.  Microwave backscattering by nonspherical ice particles at 5.6 GHz using second-order perturbation series , 2001 .

[8]  A. Macke,et al.  Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements , 2001 .

[9]  T. Nousiainen Scattering of Light by Raindrops with Single-Mode Oscillations , 2000 .

[10]  V. Ramaswamy,et al.  A new multiple‐band solar radiative parameterization for general circulation models , 1999 .

[11]  P. Formenti,et al.  Interrelationships between aerosol characteristics and light scattering during late winter in an Eastern Mediterranean arid environment , 1999 .

[12]  K. Wenzel,et al.  RADIATIVE PROPERTIES OF DESERT DUST AND ITS EFFECT ON RADIATIVE BALANCE , 1999 .

[13]  O. Boucher,et al.  Uncertainties in assessing radiative forcing by mineral dust , 1998 .

[14]  K. Muinonen,et al.  Inversion of shape statistics for small solar system bodies , 1998 .

[15]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[16]  Xu Li,et al.  Particle shape and internal inhomogeneity effects on the optical properties of tropospheric aerosols of relevance to climate forcing , 1998 .

[17]  Larry L. Stowe,et al.  Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product , 1997 .

[18]  Robert A. West,et al.  Laboratory measurements of mineral dust scattering phase function and linear polarization , 1997 .

[19]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[20]  K. Muinonen,et al.  Ray optics regime for Gaussian random spheres. , 1997 .

[21]  M. Mishchenko,et al.  The influence of inclusions on light scattering by large ice particles , 1996 .

[22]  A. Macke,et al.  Single Scattering Properties of Atmospheric Ice Crystals , 1996 .

[23]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[24]  J. Peltoniemi,et al.  LIGHT SCATTERING BY GAUSSIAN RANDOM PARTICLES: RAY OPTICS APPROXIMATION , 1996 .

[25]  Barbara E. Carlson,et al.  Nonsphericity of dust‐like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling , 1995 .

[26]  Larry D. Travis,et al.  Light scattering by polydisperse, rotationally symmetric nonspherical particles: Linear polarization , 1994 .

[27]  Steven A. Ackerman,et al.  Radiative Effects of Airborne Dust on Regional Energy Budgets at the Top of the Atmosphere , 1992 .

[28]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[29]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[30]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[31]  J. Pollack,et al.  Scattering by nonspherical particles of size comparable to wavelength - A new semi-empirical theory and its application to tropospheric aerosols , 1980 .

[32]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[33]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[34]  T. Nousiainen,et al.  Modified ray optics computations for Saharan particles , 2002 .

[35]  J. Hovenier,et al.  Overview of Scattering by Nonspherical Particles , 2000 .

[36]  J. Hovenier,et al.  Concept, terms, notation , 2000 .

[37]  Karri Muinonen,et al.  Light Scattering by Stochastically Shaped Particles , 2000 .

[38]  A. Macke Monte Carlo calculations of light scattering by large particles with multiple internal inclusions , 2000 .

[39]  P. Chylek,et al.  Effective Medium approximations for Heterogeneous Particles , 2000 .

[40]  Larry D. Travis,et al.  Light Scattering by Nonspherical Particles , 1998 .

[41]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[42]  Eric P. Shettle,et al.  Atmospheric Aerosols: Global Climatology and Radiative Characteristics , 1991 .

[43]  Yu.V. Aleksandrov,et al.  Introduction to planetary physics. , 1982 .

[44]  R. Shorthill,et al.  Light scattering from particles of regular and irregular shape , 1981 .

[45]  Stanley G. Benjamin,et al.  Radiative Heating Rates for Saharan Dust , 1980 .