Parametric resonance in cylindrical shells: a case study in the nonlinear vibration of structural shells

The aim of this work is to demonstrate in a tutorial fashion how recent ideas and methods of bifurcation theory and nonlinear dynamics have improved the understanding of structural buckling under dynamic loads and vibration of shells under parametric excitation. The paper focuses on geometrically nonlinear forced vibrations of circular cylindrical shells. The emphasis is on fundamental issues and differences between results obtained by linear and nonlinear analysis. Analytical and numerical results for shell models are presented and discussed in the light of nonlinear mode interaction and parametric resonance. The main conclusion from the case studied is that linear theory provides only incomplete and in some cases inaccurate results, when the vibration amplitude becomes comparable to the shell thickness.

[1]  D. A. Evensen,et al.  NONLINEAR VIBRATIONS OF CYLINDRICAL SHELLS — LOGICAL RATIONALE , 1999 .

[2]  V. V. Bolotin,et al.  Dynamic Stability of Elastic Systems , 1965 .

[3]  Clarence W. de Silva,et al.  Vibration: Fundamentals and Practice , 1999 .

[4]  R. Benamar,et al.  NON-LINEAR VIBRATIONS OF SHELL-TYPE STRUCTURES: A REVIEW WITH BIBLIOGRAPHY , 2002 .

[5]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[6]  C. R. Calladine,et al.  Theory of Shell Structures , 1983 .

[7]  S. Antman Nonlinear problems of elasticity , 1994 .

[8]  Atanas Popov,et al.  Symbolic computation of potential energy functions , 1998, SIGS.

[9]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[10]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[11]  Atanas A. Popov,et al.  LOW DIMENSIONAL MODELS OF SHELL VIBRATIONS. PARAMETRICALLY EXCITED VIBRATIONS OF CYLINDER SHELLS , 1998 .

[12]  G. Simitses,et al.  Elastic stability of circular cylindrical shells , 1984 .

[13]  Indeterminate trans-critical bifurcations in parametrically excited systems , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  J. Thompson,et al.  AUTO-PARAMETRIC RESONANCE IN CYCLINDRICAL SHELLS USING GEOMETRIC AVERAGING , 1999 .

[15]  J. M. T. Thompson,et al.  Suppression of escape by resonant modal interactions: in shell vibration and heave-roll capsize , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  J. Thompson,et al.  Indeterminate sub-critical bifurcations in parametric resonance , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  A. Popov,et al.  CHAOTIC ENERGY EXCHANGE THROUGH AUTO-PARAMETRIC RESONANCE IN CYLINDRICAL SHELLS , 2001 .

[18]  J. Hutchinson,et al.  Buckling of Bars, Plates and Shells , 1975 .

[19]  Earl H. Dowell,et al.  Modal equations for the nonlinear flexural vibrations of a cylindrical shell , 1968 .

[20]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[21]  W. C. Schnobrich Thin Shell Structures , 1985 .

[22]  Giles W Hunt,et al.  Hidden symmetry concepts in the elastic buckling of axially-loaded cylinders , 1986 .

[23]  Y. C. Fung,et al.  On the Vibration of Thin Cylindrical Shells Under Internal Pressure , 1957 .

[24]  S. Timoshenko Theory of Elastic Stability , 1936 .

[25]  M. Païdoussis,et al.  Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction , 2003 .

[26]  J. Thompson,et al.  Elastic Instability Phenomena , 1984 .

[27]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[28]  Ali H. Nayfeh,et al.  Modal Interactions in Dynamical and Structural Systems , 1989 .

[29]  G. Iooss,et al.  Elementary stability and bifurcation theory , 1980 .

[30]  Earl H. Dowell,et al.  COMMENTS ON THE NONLINEAR VIBRATIONS OF CYLINDRICAL SHELLS , 1998 .

[31]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[32]  L. Donnell,et al.  Beams, plates and shells , 1976, Finite Element Analysis.

[33]  Francis C. Moon,et al.  Chaotic and fractal dynamics , 1992 .