Introduction to local fractional derivative and integral operators

We present the recent introduction to fractional derivatives. We give the properties and theorems of local fractional derivatives and local fractional integrals. Specially, we focus upon the local fractional Rolle’s theorem, mean value theorem, Newton–Leibniz formula, integration by parts, and Taylor’s theorem within the local fractional integrals. We also present the heat equation, wave equation, Laplace equation, Klein–Gordon equation, Schrodinger equation, diffusion equation, transport equation, Poisson equation, linear Korteweg–de Vries equation, Tricomi equation, Fokker–Planck equation, Lighthill–Whitham–Richards equation, Helmholtz equation, damped wave equation, dissipative wave equation, Boussinesq equation, nonlinear wave equation, Burgers equation, forced Burgers equation, inviscid Burgers equation, nonlinear Korteweg–de Vries equation, modified Korteweg–de Vries equation, generalized Korteweg–de Vries equation, nonlinear Klein–Gordon equation, Maxwell’s equation, Navier–Stokes equation, and Euler’s equation in fractal dimensional space within the local fractional partial derivative operator. We utilize the Cantor-type cycle coordinate system, Cantor-type cylindrical coordinate system, and Cantor-type spherical coordinate system to observe the wave equation, Laplace equation, Poisson equation, Helmholtz equation, heat-conduction equation, damped wave equation, dissipative wave equation, diffusion equation, and Maxwell’s equations in fractal dimensional space. We also discuss the wave equation, heat-conduction equation, damped wave equation, and diffusion equation in the Cantor-type cylindrical symmetry form and in the Cantor-type spherical symmetry form.

[1]  Hari M. Srivastava,et al.  A Local Fractional Integral Inequality on Fractal Space Analogous to Anderson’s Inequality , 2014 .

[2]  Changpin Li,et al.  Introduction to fractional integrability and differentiability , 2011 .

[3]  José António Tenreiro Machado,et al.  On development of fractional calculus during the last fifty years , 2013, Scientometrics.

[4]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[5]  Xiao‐Jun Yang,et al.  Observing diffusion problems defined on cantor sets in different coordinate systems , 2015 .

[6]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[7]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[8]  Ralf Metzler,et al.  Fractional dynamics : recent advances , 2011 .

[9]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[10]  S. Arabia,et al.  Properties of a New Fractional Derivative without Singular Kernel , 2015 .

[11]  Kewei Zhang,et al.  On the local fractional derivative , 2010 .

[12]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[13]  A. Luo,et al.  Fractional Dynamics and Control , 2011 .

[14]  Jacky Cresson,et al.  About Non-differentiable Functions , 2001 .

[15]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[16]  M. Sababheh,et al.  A new definition of fractional derivative , 2014, J. Comput. Appl. Math..

[17]  Hari M. Srivastava,et al.  Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation , 2014 .

[18]  Guy Jumarie,et al.  Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..

[19]  Yang Xiao-Jun Local Fractional Functional Analysis and Its Applications , 2011 .

[20]  Pietro Cornetti,et al.  The elastic problem for fractal media: basic theory and finite element formulation , 2004 .

[21]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[22]  Pietro Cornetti,et al.  Calculation of the tensile and flexural strength of disordered materials using fractional calculus , 2004 .

[23]  M. Ortigueira Fractional Central Differences and Derivatives , 2008 .

[24]  Dumitru Baleanu,et al.  Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis , 2013 .

[25]  Saptarshi Das,et al.  Fractional Order Signal Processing: Introductory Concepts and Applications , 2011 .

[26]  Wen Chen,et al.  Investigation on Fractional and Fractal Derivative Relaxation- Oscillation Models , 2010 .

[27]  H. Srivastava,et al.  Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives , 2013 .

[28]  Guang-Sheng Chen,et al.  Generalizations of Hölder’s and Some Related Integral Inequalities on Fractal Space , 2011, 1109.5567.

[29]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[30]  Kiran M. Kolwankar,et al.  Hölder exponents of irregular signals and local fractional derivatives , 1997, chao-dyn/9711010.

[31]  Guy Jumarie,et al.  On the representation of fractional Brownian motion as an integral with respect to (dt)alpha , 2005, Appl. Math. Lett..

[32]  Dumitru Baleanu,et al.  TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA WITHIN FRACTIONAL COMPLEX TRANSFORM METHOD , 2013 .

[33]  Kiran M. Kolwankar,et al.  Local Fractional Fokker-Planck Equation , 1998 .

[34]  Delfim F. M. Torres,et al.  Fractional Calculus of Variations , 2015 .

[35]  Y. Xiaojun,et al.  Advanced Local Fractional Calculus and Its Applications , 2012 .

[36]  Yu Zhang,et al.  On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics , 2014, Entropy.

[37]  Ji-Huan He A NEW FRACTAL DERIVATION , 2011 .

[38]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[39]  Xiao‐Jun Yang,et al.  Maxwell’s Equations on Cantor Sets: A Local Fractional Approach , 2013 .

[40]  J. Machado,et al.  A Review of Definitions for Fractional Derivatives and Integral , 2014 .

[41]  Ji-Huan He,et al.  Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus , 2012 .

[42]  Dumitru Baleanu,et al.  Local Fractional Poisson and Laplace Equations with Applications to Electrostatics in Fractal Domain , 2014 .

[43]  Kiran M. Kolwankar,et al.  Fractional differentiability of nowhere differentiable functions and dimensions. , 1996, Chaos.

[44]  A. Atangana,et al.  A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions , 2013 .

[45]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[46]  Yang Zhao,et al.  Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow , 2014 .

[47]  Udita N. Katugampola New approach to a generalized fractional integral , 2010, Appl. Math. Comput..

[48]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[49]  Xiao‐Jun Yang,et al.  Local fractional variational iteration method for Fokker-Planck equation on a Cantor set , 2013 .

[50]  Manuel Duarte Ortigueira,et al.  From Differences to Derivatives , 2004 .

[51]  J. A. Tenreiro Machado,et al.  Fractional derivatives: Probability interpretation and frequency response of rational approximations , 2009 .

[52]  Pietro Cornetti,et al.  A fractional calculus approach to the description of stress and strain localization in fractal media , 2002 .

[53]  Lokenath Debnath,et al.  A brief historical introduction to fractional calculus , 2004 .

[54]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[55]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[56]  G. Jumarie Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions , 2008 .

[57]  Xiao‐Jun Yang,et al.  Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method , 2013 .

[58]  Ai-Min Yang,et al.  THE YANG-FOURIER TRANSFORMS TO HEAT-CONDUCTION IN A SEMI-INFINITE FRACTAL BAR , 2013 .

[59]  Xiao‐Jun Yang,et al.  Fractal Dynamical Model of Vehicular Traffic Flow within the Local Fractional Conservation Laws , 2014 .

[60]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[61]  W. Chen Time-space fabric underlying anomalous diffusion , 2005, math-ph/0505023.

[62]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[63]  Xiao-Jun Yang,et al.  Local Fractional Integral Transforms , 2011 .

[64]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[65]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[66]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[67]  Carlo Cattani,et al.  Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets , 2014 .

[68]  Hongguang Sun,et al.  Anomalous diffusion modeling by fractal and fractional derivatives , 2010, Comput. Math. Appl..

[69]  J. A. Tenreiro Machado,et al.  Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow , 2016 .

[70]  H. Srivastava,et al.  Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates , 2013 .

[71]  Yu Zhang,et al.  Solving Initial-Boundary Value Problems for Local Fractional Differential Equation by Local Fractional Fourier Series Method , 2014 .

[72]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[73]  Francesco Mainardi,et al.  A Poster about the Recent History of Fractional Calculus , 2010 .

[74]  Pietro Cornetti,et al.  Static–kinematic duality and the principle of virtual work in the mechanics of fractal media , 2001 .

[75]  H. Srivastava,et al.  Some Further Generalizations of Hölder's Inequality and Related Results on Fractal Space , 2014 .

[76]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[77]  Varsha Daftardar-Gejji,et al.  On calculus of local fractional derivatives , 2002 .

[78]  S. Arabia,et al.  Systems of Navier-Stokes equations on Cantor sets , 2013 .

[79]  J. A. Tenreiro Machado,et al.  Fractional coins and fractional derivatives , 2013 .

[80]  Hong-yan Liu,et al.  Fractional calculus for nanoscale flow and heat transfer , 2014 .

[81]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..

[82]  Manuel Duarte Ortigueira,et al.  Generalized Grünwald–Letnikov Fractional Derivative and Its Laplace and Fourier Transforms , 2011 .

[83]  Thabet Abdeljawad,et al.  On conformable fractional calculus , 2015, J. Comput. Appl. Math..

[84]  Hari M. Srivastava,et al.  Local fractional similarity solution for the diffusion equation defined on Cantor sets , 2015, Appl. Math. Lett..