Problems on chromatic polynomials of hypergraphs
暂无分享,去创建一个
[1] Feng Ming Dong. Proof of a Chromatic Polynomial Conjecture , 2000, J. Comb. Theory, Ser. B.
[2] Ewa Drgas-Burchardt,et al. Chromatic polynomials of hypergraphs , 2007, Appl. Math. Lett..
[3] Manfred Walter. Some Results on Chromatic Polynomials of Hypergraphs , 2009, Electron. J. Comb..
[4] E. G. Tay,et al. Proof of Lundow and Markstr\"{o}m's conjecture on chromatic polynomials via novel inequalities , 2018, 1803.08658.
[5] Mieczyslaw Borowiecki,et al. On chromaticity of hypergraphs , 2007, Discret. Math..
[6] Julie Zhang,et al. An Introduction to Chromatic Polynomials , 2018 .
[7] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .
[8] K. Koh,et al. Chromatic polynomials and chro-maticity of graphs , 2005 .
[9] Ioan Tomescu,et al. Some Properties of Chromatic Coefficients of Linear Uniform Hypergraphs , 2009, Graphs Comb..
[10] Klas Markström,et al. Broken-Cycle-Free Subgraphs and the Log-Concavity Conjecture for Chromatic Polynomials , 2006, Exp. Math..
[11] Julian A. Allagan,et al. Chromatic polynomials of some mixed hypergraphs , 2014, Australas. J Comb..
[12] Ioan Tomescu,et al. Chromatic Coefficients of Linear Uniform Hypergraphs , 1998, J. Comb. Theory, Ser. B.
[13] F. Brenti,et al. Expansions of chromatic polynomials and log-concavity , 1992 .
[14] Ioan Tomescu. Sunflower hypergraphs are chromatically unique , 2004, Discret. Math..
[15] Ioan Tomescu. On the chromaticity of sunflower hypergraphs SH(n, p, h) , 2007, Discret. Math..
[16] Julian A. Allagan. Chromatic Polynomials Of Some (m, l)-Hyperwheels , 2014, Comput. Sci. J. Moldova.
[17] T. Helgason. Aspects of the theory of hypermatroids , 1974 .
[18] Dominic Welsh,et al. The Markov Chain of Colourings , 1995, IPCO.
[19] Ioan Tomescu. Hypergraphs with Pendant Paths are not Chromatically Unique , 2014, Discuss. Math. Graph Theory.
[20] Klaus Dohmen,et al. A Broken-Circuits-Theorem for hypergraphs , 1995 .
[21] Paul D. Seymour,et al. Two Chromatic Polynomial Conjectures , 1997, J. Comb. Theory, Ser. B.