Improved utilisation of renewable resources: New important derivatives of glycerol

Although glycerol has been a well-known renewable chemical for centuries, its commercial relevance has increased considerably in the last few years because of its rising inevitable formation as a by-product of biodiesel production. The present review gives a broad overview on the chemistry of glycerol starting from the classic esters and oligomers to new products like glycerol carbonate, telomers, branched alkyl ethers, propanediols and epoxides. In particular, the novel possibilities to control the numerous addition, reduction and oxidation reactions via heterogeneous, homogeneous and biocatalysis will be presented. A benchmark will be given to determine the products which will have the best chances of entering the market and which processes are currently most developed.

[1]  K. Gottlieb,et al.  Glycerin – ein nachwachsender Rohstoff , 1994 .

[2]  A. Behr,et al.  Highly Selective Biphasic Telomerization of Butadiene with Glycols: Scope and Limitations , 2003 .

[3]  Arno Behr,et al.  Development of a Process for the Acid‐Catalyzed Etherification of Glycerine and Isobutene Forming Glycerine Tertiary Butyl Ethers , 2002 .

[4]  L. Prati,et al.  Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols , 1998 .

[5]  A. Dworak,et al.  Cationic polymerization of glycidol. Polymer structure and polymerization mechanism , 1995 .

[6]  Wolter Prins,et al.  Gasification of Model Compounds and Wood in Hot Compressed Water , 2006 .

[7]  Chun-Sheng Chang,et al.  Synthesis of triglycerides of phenylalkanoic acids by lipase-catalyzed esterification in a solvent-free system. , 2007, Journal of biotechnology.

[8]  Di Wang,et al.  Single-phase bimetallic system for the selective oxidation of glycerol to glycerate. , 2006, Chemical communications.

[9]  Paweł G. Parzuchowski,et al.  Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate , 2005 .

[10]  J. Aubry,et al.  Thermophysical and bionotox properties of solvo-surfactants based on ethylene oxide, propylene oxide and glycerol , 2007 .

[11]  Paul J. Dauenhauer,et al.  Renewable hydrogen by autothermal steam reforming of volatile carbohydrates , 2006 .

[12]  Y. Pouilloux,et al.  Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts , 2002 .

[13]  D. Arntz,et al.  KINETISCHE UNTERSUCHUNG ZUR HYDRATISIERUNG VON ACROLEIN , 1991 .

[14]  R. Keiski,et al.  Direct synthesis of dimethyl carbonate with supercritical carbon dioxide: Characterization of a key organotin oxide intermediate , 2006 .

[15]  Frey,et al.  Molecular Nanocapsules Based on Amphiphilic Hyperbranched Polyglycerols. , 1999, Angewandte Chemie.

[16]  M. Etzel,et al.  Conversion of Sugars to 1,2‐Propanediol by Thermoanaerobacterium thermosaccharolyticum HG‐8 , 2001, Biotechnology progress.

[17]  A. Corma,et al.  Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides , 2005 .

[18]  A. Showler,et al.  Condensation products of glycerol with aldehydes and ketones. 2-Substituted m-dioxan-5-ols and 1,3-dioxolane-4-methanols. , 1967, Chemical reviews.

[19]  Dehua Liu,et al.  Enhancement of 1,3-propanediol Production by Klebsiella pneumoniae with Fumarate Addition , 2005, Biotechnology Letters.

[20]  C. Márquez-Álvarez,et al.  Solid Catalysts for the Synthesis of Fatty Esters of Glycerol, Polyglycerols and Sorbitol from Renewable Resources , 2004 .

[21]  E. Dinjus,et al.  Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water , 2002 .

[22]  J. Barrault,et al.  “One pot” and selective synthesis of monoglycerides over homogeneous and heterogeneous guanidine catalysts , 2004 .

[23]  P. Gallezot,et al.  Chemoselective catalytic oxidation of glycerol with air on platinum metals , 1995 .

[24]  C. Piantadosi,et al.  The Preparation of Cyclic Glycerol Acetals by Transacetalation1 , 1958 .

[25]  G. Palmisano,et al.  One-pot electrocatalytic oxidation of glycerol to DHA , 2006 .

[26]  Zhongni Wang,et al.  Water-in-gasoline microemulsions stabilized by polyglycerol esters , 2007 .

[27]  J. Barrault,et al.  Facile and regioselective mono- or diesterification of glycerol derivatives over recyclable phosphazene organocatalyst , 2006 .

[28]  Tomohisa Miyazawa,et al.  Highly active metal–acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions , 2005 .

[29]  G. Hutchings,et al.  Oxidation of Glycerol Using Supported Gold Catalysts , 2004 .

[30]  F. Porta,et al.  Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity , 2004 .

[31]  Toru Iida,et al.  Acrolein synthesis from glycerol in hot-compressed water. , 2007, Bioresource technology.

[32]  A. Corma,et al.  Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts , 2004 .

[33]  G. Hutchings,et al.  Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. , 2002, Chemical communications.

[34]  Michael Mccoy,et al.  THE ADM WAY OF MAKING CHEMICALS: Agribusiness giant goes head-to-head against petroleum-based chemical companies , 2006 .

[35]  A. Corma,et al.  Design of a solid catalyst for the synthesis of a molecule with blossom orange scent , 2002 .

[36]  H. Kimura Poly(ketomalonate) by catalytic oxidation of glycerol(4)anionic polymerization , 1998 .

[37]  D. Hekmat,et al.  Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans , 2007 .

[38]  H. Rehage,et al.  Water-soluble dendritic core-shell-type architectures based on polyglycerol for solubilization of hydrophobic drugs. , 2007, Chemistry.

[39]  M. Pagliaro,et al.  From glycerol to value-added products. , 2007, Angewandte Chemie.

[40]  P. Gallezot,et al.  Selective oxidation of alcohols and aldehydes on metal catalysts , 2000 .

[41]  A. R. Galletti,et al.  Anionic ruthenium iodorcarbonyl complexes as selective dehydroxylation catalysts in aqueous solution , 1991 .

[42]  V. Pillai,et al.  Synthesis and characterization of glycerol dimethacrylate cross-linked polymethyl methacrylate: a resin for solid phase peptide synthesis , 2003 .

[43]  H. Vogel,et al.  Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production , 2006 .

[44]  H. Frey,et al.  Preparation of Catalytically Active Palladium Nanoclusters in Compartments of Amphiphilic Hyperbranched Polyglycerols , 2000 .

[45]  S. Vollenweider,et al.  3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production , 2004, Applied Microbiology and Biotechnology.

[46]  Martin C. Hawley,et al.  Conversion of Glycerol to 1,3-Propanediol via Selective Dehydroxylation , 2003 .

[47]  J. Dumesic,et al.  Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. , 2006, Angewandte Chemie.

[48]  Y. Pouilloux,et al.  Catalysis and fine chemistry , 2002 .

[49]  Alvise Perosa,et al.  Selective Hydrogenolysis of Glycerol with Raney Nickel , 2005 .

[50]  A. Behr,et al.  Verfahrensentwicklung der säurekatalysierten Veretherung von Glycerin mit Isobuten zu Glycerintertiärbutylethern , 2001 .

[51]  Y. Pouilloux,et al.  Selective Oligomerization of Glycerol Over Mesoporous Catalysts , 2004 .

[52]  V. Rives,et al.  Influence of the active phase structure Bi-Mo-Ti-O in the selective oxidation of propene , 2006 .

[53]  H. Kimura,et al.  Oxidation assisted new reaction of glycerol , 2001 .

[54]  Tomohisa Miyazawa,et al.  Glycerol conversion in the aqueous solution under hydrogen over Ru/C + an ion-exchange resin and its reaction mechanism , 2006 .

[55]  P. Claus,et al.  Liquid phase oxidation of glycerol over carbon supported gold catalysts , 2005 .

[56]  H. Kimura,et al.  Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor , 1993 .

[57]  Douglas C. Cameron,et al.  Metabolic Engineering of a 1,2-Propanediol Pathway in Escherichia coli , 1999, Applied and Environmental Microbiology.

[58]  H. Wan,et al.  MCM41 and silica supported MoVTe mixed oxide catalysts for direct oxidation of propane to acrolein , 2005 .

[59]  M. Schlaf Selective deoxygenation of sugar polyols to α,ω-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis , 2006 .

[60]  H. Kimura,et al.  Selective oxidation of glycerol on a platinum-bismuth catalyst , 1993 .

[61]  A. Zeng,et al.  Fedbatch-Verfahren für die mikrobielle Herstellung von 1,3-Propandiol inKlebsiella pneumoniae undClostridium butyricum , 2002 .

[62]  James A. Dumesic,et al.  A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts , 2005 .

[63]  Z. Mouloungui,et al.  Catalytic carbonylation of glycerin by urea in the presence of zinc mesoporous system for the synthesis of glycerol carbonate , 2003 .

[64]  Brent H. Shanks,et al.  Effect of sulfur and temperature on ruthenium-catalyzed glycerol hydrogenolysis to glycols , 2005 .

[65]  A. Corma,et al.  A new, alternative, halogen-free synthesis for the fragrance compound Melonal using zeolites and mesoporous materials as oxidation catalysts , 2005 .

[66]  Martin Bajus,et al.  tert-Butylation of glycerol catalysed by ion-exchange resins , 2005 .

[67]  B. Burczyk,et al.  Synthesis and surface properties of chemodegradable anionic surfactants: Sodium (2-n-alkyl-1,3-dioxan-5-yl)sulfates , 1997 .

[68]  K. Lehnert,et al.  Use of renewables for the production of chemicals: Glycerol oxidation over carbon supported gold catalysts , 2007 .

[69]  A. Villa,et al.  Investigation on the behaviour of Pt(0)/carbon and Pt(0),Au(0)/carbon catalysts employed in the oxidation of glycerol with molecular oxygen in water , 2006 .

[70]  W. Richtering,et al.  Hyperbranched Polymers: Structure of Hyperbranched Polyglycerol and Amphiphilic Poly(glycerol ester)s in Dilute Aqueous and Nonaqueous Solution , 2004 .

[71]  Michele Aresta,et al.  A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: The role of the catalyst, solvent and reaction conditions , 2006 .

[72]  J. Aubry,et al.  Short Chain Glycerol 1-Monoethers – a New Class of Green Solvo-Surfactants, Green Chemistry , 2006 .

[73]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .

[74]  D. C. Cameron,et al.  Metabolic Engineering of Propanediol Pathways , 1998, Biotechnology progress.

[75]  David K. Johnson,et al.  Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin , 2007 .

[76]  K. Vorlop,et al.  Conversion of glycerol to 1,3-propanediol by a newly isolated thermophilic strain , 2001, Biotechnology Letters.

[77]  G. Hutchings,et al.  Oxidation of glycerol using supported Pt, Pd and Au catalysts , 2003 .

[78]  P. Gallezot,et al.  Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids , 1995 .

[79]  F. Porta,et al.  Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals , 2005 .

[80]  E. Sastre,et al.  Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts , 2003 .

[81]  A. Baiker,et al.  Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions , 1994 .

[82]  Michael Jerry Antal,et al.  Pyrolytic sources of hydrocarbons from biomass , 1985 .

[83]  Julien Chaminand,et al.  Glycerol hydrogenolysis on heterogeneous catalysts , 2004 .

[84]  Reetta Karinen,et al.  New biocomponents from glycerol , 2006 .

[85]  Galen J. Suppes,et al.  Low-pressure hydrogenolysis of glycerol to propylene glycol , 2005 .

[86]  H. Lieske,et al.  Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals , 2007 .

[87]  R. Mülhaupt,et al.  Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization , 1999 .

[88]  Toshimitsu Suzuki,et al.  Production of Hydrogen by Steam Reforming of Glycerin on Ruthenium Catalyst , 2005 .

[89]  T. Benvegnu,et al.  Original Synthesis of Linear, Branched and Cyclic Oligoglycerol Standards , 2001 .

[90]  S. P. Crabtree,et al.  Optimize glycol production from biomass : Clean fuels , 2006 .

[91]  I. Tucker,et al.  Isotropic Systems of Medium‐Chain Mono‐ and Diglycerides for Solubilization of Lipophilic and Hydrophilic Drugs , 2004, Pharmaceutical development and technology.