Application of the Karhunen-Loéve transformation to the suppression of undesired resonances in three-dimensional NMR

[1]  Peter E. Wright,et al.  Signal suppression in the frequency domain to remove undesirable resonances with dispersive lineshapes , 1990 .

[2]  D. van Ormondt,et al.  Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure , 1985 .

[3]  A. Redfield,et al.  Pulsed Fourier‐Transform NMR Spectrometer for Use with H2O Solutions , 1971 .

[4]  K. R. Rao,et al.  Orthogonal Transforms for Digital Signal Processing , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  C. Griesinger,et al.  Recognition of secondary-structure elements in 3D TOCSY-NOESY spectra of proteins. Interpretation of 3D cross-peak amplitudes , 1990 .

[6]  Pierre Plateau,et al.  Exchangeable proton NMR without base-line distorsion, using new strong-pulse sequences , 1982 .

[7]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[8]  M. Levitt,et al.  Frequency-selective double-quantum-filtered COSY in water , 1989 .

[9]  Ad Bax,et al.  Improved solvent suppression in one-and two-dimensional NMR spectra by convolution of time-domain data , 1989 .

[10]  P. Callaghan,et al.  The High Fidelity Extraction of Weak Broad Lines from NMR Spectra Containing Large Solvent Peaks , 1984 .

[11]  Yutaka Kuroda,et al.  Postacquisition data processing method for suppression of the solvent signal , 1989 .

[12]  C. W. Hilbers,et al.  Effective water resonance suppression in 1D- and 2D-FT-1H-NMR spectroscopy of biopolymers in aqueous solution. , 1983, Biopolymers.

[13]  James Feeney,et al.  Data shift accumulation and alternate delay accumulation techniques for overcoming the dynamic range problem , 1980 .