Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents.

[1]  M. Wirth,et al.  Surface modification of PLGA particles: the interplay between stabilizer, ligand size, and hydrophobic interactions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[2]  M. Botta,et al.  Relaxivity modulation in Gd-functionalised mesoporous silicas. , 2009, Chemical communications.

[3]  Steven P Schwendeman,et al.  Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. , 2008, International journal of pharmaceutics.

[4]  Lisa Brannon-Peppas,et al.  Preparation and initial characterization of biodegradable particles containing gadolinium-DTPA contrast agent for enhanced MRI , 2008, Proceedings of the National Academy of Sciences.

[5]  S. Morcos,et al.  Extracellular gadolinium contrast agents: differences in stability. , 2008, European journal of radiology.

[6]  M. Wirth,et al.  Fluorescent bionanoprobes to characterize cytoadhesion and cytoinvasion. , 2008, Small.

[7]  A. Schaper,et al.  Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[8]  Y. Wang,et al.  Formulation of Superparamagnetic Iron Oxides by Nanoparticles of Biodegradable Polymers for Magnetic Resonance Imaging , 2008 .

[9]  Peter Hogg,et al.  Magnetic resonance imaging contrast agents: Overview and perspectives , 2007 .

[10]  M. Wirth,et al.  Stabilizer-induced viscosity alteration biases nanoparticle sizing via dynamic light scattering. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[11]  Klaas Nicolay,et al.  MRI contrast agents: current status and future perspectives. , 2007, Anti-cancer agents in medicinal chemistry.

[12]  Ralph Weissleder,et al.  Emerging concepts in molecular MRI. , 2007, Current opinion in biotechnology.

[13]  Claudia Weidensteiner,et al.  Physicochemical and MRI characterization of Gd3+-loaded polyamidoamine and hyperbranched dendrimers , 2007, JBIC Journal of Biological Inorganic Chemistry.

[14]  M. Port,et al.  Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review , 2006, Fundamental & clinical pharmacology.

[15]  G. Cravotto,et al.  How to determine free Gd and free ligand in solution of Gd chelates. A technical note. , 2006, Contrast media & molecular imaging.

[16]  M. Botta,et al.  PAMAM dendrimeric conjugates with a Gd-DOTA phosphinate derivative and their adducts with polyaminoacids: the interplay of global motion, internal rotation, and fast water exchange. , 2006, Bioconjugate chemistry.

[17]  Peter Caravan,et al.  Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. , 2006, Chemical Society reviews.

[18]  Klaas Nicolay,et al.  Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging , 2006, NMR in biomedicine.

[19]  C. Geraldes,et al.  Supramolecular assembly of an amphiphilic Gd(III) chelate: tuning the reorientational correlation time and the water exchange rate. , 2006, Chemistry.

[20]  P. Winter,et al.  Improved Paramagnetic Chelate for Molecular Imaging with MRI , 2005 .

[21]  W. Buchberger,et al.  Design, synthesis, physical and chemical characterisation, and biological interactions of lectin-targeted latex nanoparticles bearing Gd–DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI) , 2005, Histochemistry and Cell Biology.

[22]  K. Leong,et al.  MR imaging of biodegradable polymeric microparticles: A potential method of monitoring local drug delivery , 2005, Magnetic resonance in medicine.

[23]  M. Botta,et al.  Gadolinium(III) Complexes of dota‐Derived N‐Sulfonylacetamides (H4(dota‐NHSO2R)=10‐{2‐[(R)sulfonylamino]‐2‐oxoethyl}‐1,4,7,10‐tetraazacyclododecane‐1,4,7‐triacetic Acid): A New Class of Relaxation Agents for Magnetic Resonance Imaging Applications , 2005 .

[24]  Peter Caravan,et al.  Synthesis and evaluation of a high relaxivity manganese(II)-based MRI contrast agent. , 2004, Inorganic chemistry.

[25]  E. McVeigh,et al.  In vitro release of vascular endothelial growth factor from gadolinium‐doped biodegradable microspheres , 2004, Magnetic resonance in medicine.

[26]  G. Liu,et al.  Physicochemical characterization of the dimeric lanthanide complexes [en{Ln(DO3A)(H2O)}2] and [pi{Ln(DTTA)(H2O)}2]2−: a variable‐temperature 17O NMR study , 2004, Magnetic resonance in chemistry : MRC.

[27]  Sheng-Kwei Song,et al.  Improved molecular imaging contrast agent for detection of human thrombus , 2003, Magnetic resonance in medicine.

[28]  C. Pichot,et al.  Surface functionalization of poly(D, L-lactic acid) nanoparticles with poly(ethylenimine) and plasmid DNA by the layer-by-layer approach , 2003 .

[29]  Jong-Duk Kim,et al.  Nanoparticles of magnetic ferric oxides encapsulated with PLGA and their application as MRI contrast agent , 2003 .

[30]  S. Laurent,et al.  Stability of MRI Paramagnetic Contrast Media: A Proton Relaxometric Protocol for Transmetallation Assessment , 2001, Investigative radiology.

[31]  M. Wirth,et al.  The Role of Surface Functionalization in the Design of PLGA Micro- and Nanoparticles , 2010 .

[32]  Sophie Laurent,et al.  Classification and basic properties of contrast agents for magnetic resonance imaging. , 2009, Contrast media & molecular imaging.

[33]  É. Tóth,et al.  Rotational dynamics account for pH-dependent relaxivities of PAMAM dendrimeric, Gd-based potential MRI contrast agents. , 2005, Chemistry.

[34]  M. Botta,et al.  Gd(III)-BASED CONTRAST AGENTS FOR MRI , 2005 .

[35]  Indu Bala,et al.  PLGA nanoparticles in drug delivery: the state of the art. , 2004, Critical reviews in therapeutic drug carrier systems.

[36]  L. Helm,et al.  Relaxivity of MRI Contrast Agents , 2002 .