Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation

[1]  J. Jessen,et al.  Identification and developmental expression pattern of van gogh-like 1, a second zebrafish strabismus homologue. , 2004, Gene expression patterns : GEP.

[2]  A. Copp,et al.  Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse , 1996, Anatomy and Embryology.

[3]  J. Campos-Ortega,et al.  Neurulation in the anterior trunk region of the zebrafish Brachydanio rerio , 1993, Roux's archives of developmental biology.

[4]  D. E. Holmdahl Die zweifache Bildungsweise des zentralen Nervensystems bei den Wirbeltieren , 1933, Wilhelm Roux' Archiv für Entwicklungsmechanik der Organismen.

[5]  M. Wiley,et al.  The vertebrate tail bud: three germ layers from one tissue , 2004, Anatomy and Embryology.

[6]  J. Campos-Ortega,et al.  On the formation of the neural keel and neural tube in the zebrafishDanio (Brachydanio) rerio , 2004, Roux's archives of developmental biology.

[7]  J. Wallingford,et al.  Shroom Induces Apical Constriction and Is Required for Hingepoint Formation during Neural Tube Closure , 2003, Current Biology.

[8]  Edwin Cuppen,et al.  Efficient target-selected mutagenesis in zebrafish. , 2003, Genome research.

[9]  R. Geisler,et al.  lockjaw encodes a zebrafish tfap2a required for early neural crest development , 2003, Development.

[10]  E. Knapik,et al.  Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype , 2003, Development.

[11]  V. Tropepe,et al.  Can zebrafish be used as a model to study the neurodevelopmental causes of autism? , 2003, Genes, brain, and behavior.

[12]  Andrew J. Copp,et al.  The genetic basis of mammalian neurulation , 2003, Nature Reviews Genetics.

[13]  J. Campos-Ortega,et al.  A 90° rotation of the mitotic spindle changes the orientation of mitoses of zebrafish neuroepithelial cells , 2003 .

[14]  Z. Pujic,et al.  Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. , 2003, Developmental biology.

[15]  G. R. Handrigan,et al.  Concordia discors: duality in the origin of the vertebrate tail , 2003, Journal of anatomy.

[16]  J. Campos-Ortega,et al.  A 90-degree rotation of the mitotic spindle changes the orientation of mitoses of zebrafish neuroepithelial cells. , 2003, Development.

[17]  J. Wallingford,et al.  Neural tube closure requires Dishevelled-dependent convergent extension of the midline , 2002, Development.

[18]  Lilianna Solnica-Krezel,et al.  Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements , 2002, Nature Cell Biology.

[19]  R. Geisler,et al.  parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. , 2002, Development.

[20]  R. Plasterk,et al.  Target-Selected Inactivation of the Zebrafish rag1 Gene , 2002, Science.

[21]  Michael J. Parsons,et al.  Zebrafish mutants identify an essential role for laminins in notochord formation. , 2002, Development.

[22]  P. Hamel,et al.  Pax3 regulates morphogenetic cell behavior in vitro coincident with activation of a PCP/non-canonical Wnt-signaling cascade. , 2002, Journal of cell science.

[23]  J. Malicki,et al.  Nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina , 2002, Nature Genetics.

[24]  M. Fishman,et al.  Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul , 2001, Current Biology.

[25]  Y. Jan,et al.  Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis , 2001, Current Biology.

[26]  P. Ingham,et al.  The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. , 2001, Development.

[27]  M. Justice,et al.  Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail , 2001, Nature Genetics.

[28]  G. Schoenwolf,et al.  Towards a cellular and molecular understanding of neurulation , 2001, Developmental dynamics : an official publication of the American Association of Anatomists.

[29]  Stephen W. Wilson,et al.  A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. , 2001, Genes & development.

[30]  M. Justice,et al.  Identification of a new chemically induced allele (Lp(m1Jus)) at the loop-tail locus: morphology, histology, and genetic mapping. , 2001, Genomics.

[31]  H. Baldwin,et al.  Rescuing the N-cadherin knockout by cardiac-specific expression of N- or E-cadherin. , 2001, Development.

[32]  Y. Jan,et al.  Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. , 2001, Current biology : CB.

[33]  V S Caviness,et al.  The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. , 2000, Development.

[34]  J. Frisén,et al.  Regulation of repulsion versus adhesion by different splice forms of an Eph receptor , 2000, Nature.

[35]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[36]  T. Yagi,et al.  Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. , 2000, Genes & development.

[37]  M. J. Harris,et al.  Mouse models for neural tube closure defects. , 2000, Human molecular genetics.

[38]  L. Davidson,et al.  Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. , 1999, Development.

[39]  T. Bouwmeester,et al.  The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. , 1999, Development.

[40]  M. Matzuk,et al.  Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. , 1999, Development.

[41]  P. Chambon,et al.  Embryonic retinoic acid synthesis is essential for early mouse post-implantation development , 1999, Nature Genetics.

[42]  Region-specific cell clones in the developing spinal cord of the zebrafish , 1999, Development Genes and Evolution.

[43]  E. Coucouvanis,et al.  BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. , 1999, Development.

[44]  F. V. van Eeden,et al.  Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. , 1998, Development.

[45]  C. Redies,et al.  Blocking N-Cadherin Function Disrupts the Epithelial Structure of Differentiating Neural Tissue in the Embryonic Chicken Brain , 1998, The Journal of Neuroscience.

[46]  C. Viebahn,et al.  Neurulation in the rabbit embryo , 1998, Anatomy and Embryology.

[47]  Alexander F. Schier,et al.  Positional Cloning Identifies Zebrafish one-eyed pinhead as a Permissive EGF-Related Ligand Required during Gastrulation , 1998, Cell.

[48]  M. J. Harris,et al.  Genetic landmarks for defects in mouse neural tube closure. , 1997, Teratology.

[49]  Wei Hsu,et al.  The Mouse Fused Locus Encodes Axin, an Inhibitor of the Wnt Signaling Pathway That Regulates Embryonic Axis Formation , 1997, Cell.

[50]  M. Griffith Midkine and secondary neurulation. , 1997, Teratology.

[51]  R. Hynes,et al.  Developmental defects in mouse embryos lacking N-cadherin. , 1997, Developmental biology.

[52]  W. Huttner,et al.  Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure--remodeling of the neuroepithelium prior to neurogenesis. , 1996, Developmental biology.

[53]  C. Redies,et al.  Cadherins in the developing central nervous system: an adhesive code for segmental and functional subdivisions. , 1996, Developmental biology.

[54]  C. Nüsslein-Volhard,et al.  Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. , 1996, Development.

[55]  A. Schier,et al.  Mutations affecting the development of the embryonic zebrafish brain. , 1996, Development.

[56]  L. Holland,et al.  Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest. , 1996, Development.

[57]  E. Coucouvanis,et al.  Signals for death and survival: A two-step mechanism for cavitation in the vertebrate embryo , 1995, Cell.

[58]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[59]  M. Catala,et al.  Organization and development of the tail bud analyzed with the quail-chick chimaera system , 1995, Mechanisms of Development.

[60]  U. Strähle,et al.  Early neurogenesis in the zebrafish embryo , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[61]  C. Kimmel,et al.  Cell cycles and clonal strings during formation of the zebrafish central nervous system. , 1994, Development.

[62]  G. Morriss-Kay,et al.  Normal neurulation in mammals. , 1994, Ciba Foundation symposium.

[63]  B. Swalla Mechanisms of gastrulation and tail formation in ascidians , 1993, Microscopy research and technique.

[64]  S. Fraser,et al.  Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. , 1993, Development.

[65]  G. Schoenwolf,et al.  Further evidence of extrinsic forces in bending of the neural plate , 1991, The Journal of comparative neurology.

[66]  A. Copp,et al.  The embryonic development of mammalian neural tube defects , 1990, Progress in Neurobiology.

[67]  A. Reichenbach,et al.  Primary neurulation in teleosts--evidence for epithelial genesis of central nervous tissue as in other vertebrates. , 1990, Journal fur Hirnforschung.

[68]  M. Jacobson,et al.  Changes in neural cell adhesion molecule (NCAM) structure during vertebrate neural development. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[69]  T. Nakao,et al.  Light- and electron-microscopic observations of the tail bud of the larval lamprey (Lampetra japonica), with special reference to neural tube formation. , 1984, The American journal of anatomy.

[70]  G. Schoenwolf Histological and ultrastructural studies of secondary neurulation in mouse embryos. , 1984, The American journal of anatomy.

[71]  G. Schoenwolf,et al.  Ultrastructure of secondary neurulation in the chick embryo. , 1980, The American journal of anatomy.

[72]  T. Fujimoto,et al.  Fine morphological study of neural tube formation in the teleost, Oryzias latipes. , 1977, Okajimas folia anatomica Japonica.

[73]  B. Criley,et al.  Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes , 1969 .

[74]  B. Kingsbury The ‘law’ of cephalocaudal differential growth in its application to the nervous system , 1932 .

[75]  E. Conklin The embryology of amphioxus , 1932 .

[76]  C. Knpffer Die Entwicklung von Petromyzon Planeri , 1890 .