Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices

We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit coupling in optical lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which is essential for spin spiral order. By taking into account spin-orbit coupling and an external Zeeman field, we derive an effective spin model in the Mott insulator regime at half filling and demonstrate that the DM interaction in optical lattices can be made extremely strong with realistic experimental parameters. The rich finite temperature phase diagrams of the effective spin models for fermions and bosons are obtained via classical Monte Carlo simulations.

[1]  Cengiz Sen,et al.  Complex state found in the colossal magnetoresistance regime of models for manganites , 2012 .

[2]  Maxim Mostovoy,et al.  Ferroelectricity in spiral magnets. , 2005, Physical review letters.

[3]  N. Nagaosa,et al.  Spin current and magnetoelectric effect in noncollinear magnets. , 2004, Physical review letters.

[4]  Yongping Zhang,et al.  Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate , 2011, Scientific Reports.

[5]  Michael Köhl,et al.  Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. , 2005, Physical review letters.

[6]  Tarik Yefsah,et al.  Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.

[7]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[8]  Zi Cai,et al.  Magnetic phases of bosons with synthetic spin-orbit coupling in optical lattices , 2012, 1205.3116.

[9]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[10]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[11]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[12]  I. Dzyaloshinskiǐ THEORY OF HELICOIDAL STRUCTURES IN ANTIFERROMAGNETS. I. NONMETALS , 2013 .

[13]  Guang-Can Guo,et al.  Origin of ferroelectricity in high-T(c) magnetic ferroelectric CuO. , 2010, Physical review letters.

[14]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[15]  E. Dagotto,et al.  Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites , 2005, cond-mat/0508075.

[16]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[17]  Chuanwei Zhang,et al.  Bose-Einstein Condensates in Spin-Orbit Coupled Optical Lattices: Flat Bands and Superfluidity , 2012, 1203.2389.

[18]  B V Svistunov,et al.  Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. , 2003, Physical review letters.

[19]  Hui Zhai,et al.  Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate. , 2012, Physical review letters.

[20]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[21]  Yoshinori Tokura,et al.  Multiferroics with Spiral Spin Orders , 2010, Advanced materials.

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Jing Zhang,et al.  Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers , 2011, 1106.0199.

[24]  T. Corcovilos,et al.  Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering , 2009, 0910.2450.

[25]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[26]  Yoshinori Tokura,et al.  Multiferroics as Quantum Electromagnets , 2006, Science.

[27]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[28]  Mikhail D. Lukin,et al.  Phase diagram of two-component bosons on an optical lattice , 2003 .

[29]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[30]  New Jersey,et al.  Spin structure and magnetic frustration in multiferroic RMn2O5 (R=Tb,Ho,Dy) , 2005, cond-mat/0501382.

[31]  Chuanwei Zhang,et al.  Emergent kinetics and fractionalized charge in 1D spin-orbit coupled flatband optical lattices. , 2013, Physical review letters.

[32]  R. A. Williams,et al.  Peierls substitution in an engineered lattice potential. , 2012, Physical review letters.

[33]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[34]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[35]  L. C. Chapon,et al.  Spin structure and magnetic frustration in multiferroic RMn 2 O 5 , 2005 .

[36]  Hui Zhai,et al.  Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.

[37]  Rong Yu,et al.  Exchange bias driven by the Dzyaloshinskii-Moriya interaction and ferroelectric polarization at G-type antiferromagnetic perovskite interfaces. , 2009, Physical review letters.

[38]  Cengiz Sen,et al.  Emergent dimensional reduction of the spin sector in a model for narrow-band manganites , 2011 .

[39]  Martin Dressel,et al.  Electrodynamics of correlated electron materials , 2011, 1106.2309.

[40]  I Bloch,et al.  Time-Resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices , 2007, Science.

[41]  V. Galitski,et al.  Exotic quantum spin models in spin-orbit-coupled Mott insulators. , 2012, Physical review letters.

[42]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[43]  Tsuyoshi Kimura,et al.  Spiral Magnets as Magnetoelectrics , 2007 .

[44]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[45]  Chuanwei Zhang,et al.  Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates. , 2011, Physical review letters.

[46]  Nandini Trivedi,et al.  Bose-Hubbard models with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity. , 2012, Physical review letters.