High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

[1]  Osamu Furukawa,et al.  Effect of stoichiometry on the dielectric properties and life performance of (Pb[sub 0. 875]Ba[sub 0. 125])[(Mg[sub 1/3]Nb[sub 2/3])[sub 0. 5](Zn[sub 1/3]Nb[sub 2/3])[sub 0. 3]Ti[sub 0. 2]]O[sub 3] relaxor dielectric ceramic: Part II, life performance , 1993 .

[2]  Qifa Zhou,et al.  Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[3]  Shujun Zhang,et al.  High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective , 2012 .

[4]  Yamamoto Noriko,et al.  Electrical and physical properties of repoled PMN–PT single-crystal sliver transducer , 2013 .

[5]  Heng Li Fabrication of single crystal based phased array medical imaging ultrasonic transducers , 2008 .

[6]  Qifa Zhou,et al.  PMN-PT single-crystal high-frequency kerfless phased array , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[7]  J R Siewert,et al.  Endoscopic ultrasound in pancreatic tumor diagnosis. , 1991, Gastrointestinal endoscopy.

[8]  G. Kino Acoustic waves : devices, imaging, and analog signal processing , 1987 .

[9]  Jiyan Dai,et al.  Multiple matching scheme for broadband 0.72Pb(Mg1/3Nb2/3)O3−0.28PbTiO3 single crystal phased-array transducer , 2009 .

[10]  Chunsheng Zhao,et al.  Cylinder-shaped ultrasonic motors 4.8mm in diameter using electroactive piezoelectric materials , 2007 .

[11]  芝本弘一,et al.  The ultrasonic probe , 2004 .

[12]  D. A. Christopher,et al.  Advances in ultrasound biomicroscopy. , 2000, Ultrasound in medicine & biology.

[13]  D. Turnbull,et al.  Design and fabrication of a 40-MHz annular array transducer , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  Shujun Zhang,et al.  Thickness‐Dependent Properties of Relaxor‐PbTiO3 Ferroelectrics for Ultrasonic Transducers , 2010, Advanced functional materials.

[15]  罗豪甦,et al.  Cylinder-shaped ultrasonic motors 4.8 mm in diameter using electroactive piezoelectric materials , 2007 .

[16]  Kwok-ho Lam,et al.  Enhanced magnetoelectric effect in a stress-biased lead magnesium niobate-lead titanate single crystal/Terfenol-D alloy magnetoelectric sensor , 2011 .

[17]  Qifa Zhou,et al.  Endoscopic ultrasound radial arrays fabricated with high-performance piezocrystal and piezocomposite , 2010, 2010 IEEE International Ultrasonics Symposium.

[18]  Kin-sun Wong Study of domain structure and evolution in PMN-30%PT single crystals by means of piezoresponse force microscopy , 2007 .

[19]  Thomas R. Shrout,et al.  Electromechanical characterization of Pb(In0.5Nb0.5)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals as a function of crystallographic orientation and temperature , 2009 .

[20]  Thomas R. Shrout,et al.  Complete set of material constants of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal with morphotropic phase boundary composition , 2009 .

[21]  R. Service,et al.  Shape-Changing Crystals Get Shiftier , 1997, Science.

[22]  S. T. Laua,et al.  Ferroelectric lead magnesium niobate–lead titanate single crystals for ultrasonic hydrophone applications , 2004 .

[23]  Chao Zhang,et al.  35 MHz PMN-PT Single Crystal Annular Array Ultrasonic Transducer , 2012 .

[24]  Atul C. Mehta,et al.  Towards a minimally invasive staging strategy in NSCLC: analysis of pet positive mediastinal lesions by EUS-FNA , 2004 .

[25]  Kenji Uchino,et al.  High electromechanical coupling piezoelectrics: relaxor and normal ferroelectric solid solutions , 1998 .

[26]  Haosu Luo,et al.  Peculiar properties of a high Curie temperature Pb(In1/2Nb1/2)O3–PbTiO3 single crystal grown by the modified Bridgman technique , 2002 .

[27]  Danfeng Yang,et al.  Growth and electrical properties of large size Pb(In1∕2Nb1∕2)O3–Pb(Mg1∕3Nb2∕3)O3–PbTiO3 crystals prepared by the vertical Bridgman technique , 2007 .

[28]  K. Lam,et al.  High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique. , 2013, Ultrasonics.

[29]  Haosu Luo,et al.  Vibration mode and relevant ultrasonic applications of ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) , 2008, 2008 IEEE Ultrasonics Symposium.

[30]  Wenwu Cao,et al.  Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. , 2014, Progress in materials science.

[31]  Qifa Zhou,et al.  PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[32]  Dan Zhou,et al.  Optimized orientation of 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal for applications in medical ultrasonic arrays , 2008 .

[33]  K. Lam,et al.  Kerf profile and piezoresponse study of the laser micro-machined PMN-PT single crystal using 355 nm Nd:YAG , 2013 .

[34]  Shiro Urayama,et al.  Endoscopic ultrasound-guided celiac plexus neurolysis for pancreatic cancer pain: a single-institution experience and review of the literature. , 2006, The journal of supportive oncology.

[35]  Jun Luo,et al.  Relaxor-PbTiO3 single crystals for various applications , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[36]  Steven Carpenter,et al.  Endoscopic ultrasound probes. , 2006, Gastrointestinal endoscopy.

[37]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[38]  Carlos H. F. Alves,et al.  Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[39]  Qifa Zhou,et al.  High-Frequency Ultrasonic Transducers and Arrays , 2008 .

[40]  Di Lin,et al.  The MA-type monoclinic phase and its dc electric/temperature responses studies in Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary single crystals by polarized light microscopy , 2010 .

[41]  Michael B Wallace,et al.  Detection of occult liver metastases during EUS for staging of malignancies. , 2004, Gastrointestinal endoscopy.

[42]  Yan Chen High-frequency and endoscopic ultrasonic transducers based on PMN-PT and PIN-PMN-PT single crystals , 2013 .

[43]  Jiyan Dai,et al.  High-frequency PIN–PMN–PT single crystal ultrasonic transducer for imaging applications , 2012 .

[44]  Weiqi Wang,et al.  Ternary piezoelectric single-crystal PIMNT based 2-2 composite for ultrasonic transducer applications , 2013 .

[45]  Yan Chen,et al.  Endoscopic ultrasound radial array transducers fabricated with PZT tube by a rotate-and-dice method , 2013 .

[46]  Harry J M Groen,et al.  Comparison of EUS-guided fine needle aspiration and integrated PET-CT in restaging after treatment for locally advanced non-small cell lung cancer. , 2009, Lung cancer.

[47]  Zhilun Gui,et al.  Low-Temperature Sintering of Lead-Based Piezoelectric Ceramics. , 1989 .

[48]  J. Lachter,et al.  EUS changes diagnosis from pancreatic to gallbladder carcinoma , 2002, International journal of gastrointestinal cancer.

[49]  P. Wells Current status and future technical advances of ultrasonic imaging , 2000, IEEE Engineering in Medicine and Biology Magazine.

[50]  Haosu Luo,et al.  Piezoelectrically actuated ejector using PMN–PT single crystal , 2005 .

[51]  Thomas R. Shrout,et al.  Dielectric properties of lead-magnesium niobate ceramics , 1984 .

[52]  Shujun Zhang,et al.  Elastic, piezoelectric and dielectric properties of PIN-PMN-PT crystals grown by Bridgman method , 2008, 2008 IEEE Ultrasonics Symposium.

[53]  陈凯,et al.  Growth and electrical properties of large size Pb(In1/2Nb1/2)O3– Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals prepared by the vertical Bridgman technique , 2007 .

[54]  K. Lam,et al.  Broad-band and high-temperature ultrasonic transducer fabricated using a Pb(In(1∕2)Nb(1∕2))-Pb(Mg(1∕3)Nb(2∕3))-PbTiO3 single crystal∕epoxy 1-3 composite. , 2011, The Review of scientific instruments.

[55]  Haiqing Xu,et al.  Effect of composition and poling field on the properties and ferroelectric phase-stability of Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals , 2002 .

[56]  Tao Wang,et al.  A longitudinal (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single-crystal piezoelectric transformer , 2010 .

[57]  Y C Li,et al.  Multiple matching scheme for broadband 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) single crystal phased-array transducer. , 2009, Journal of applied physics.

[58]  James F. Carroll,et al.  Improved stability for piezoelectric crystals grown in the lead indium niobate–lead magnesium niobate–lead titanate system , 2007 .

[59]  A. Batten,et al.  PMN–PT single-crystal transducer for non-destructive evaluation , 2006 .

[60]  K. Kirk Shung,et al.  Diagnostic Ultrasound: Past, Present, and Future , 2011 .

[61]  K. Shung,et al.  Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[62]  P M Schlag,et al.  EUS-guided fine needle biopsy: minimally invasive access to metastatic or recurrent cancer. , 1999, European journal of ultrasound : official journal of the European Federation of Societies for Ultrasound in Medicine and Biology.

[63]  Weiqi Wang,et al.  Cylindrically shaped ultrasonic linear array fabricated using PIMNT/epoxy 1-3 piezoelectric composite , 2013 .

[64]  A. Chak,et al.  Real-time endoscopic ultrasound-guided fine-needle aspiration of a mediastinal lymph node. , 1993, Gastrointestinal endoscopy.

[65]  L. E. Cross,et al.  Connectivity and piezoelectric-pyroelectric composites , 1978 .

[66]  K K Shung,et al.  Lead-free KNLNT piezoelectric ceramics for high-frequency ultrasonic transducer application. , 2009, Ultrasonics.

[67]  Wenwu Cao,et al.  Complete set of material constants of Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3)single crystal with morphotropic phase boundary composition. , 2009, Journal of applied physics.

[68]  戴吉岩 Broad-band and high-temperature ultrasonic transducer fabricated using a Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)-PbTiO3 single crystal/epoxy 1–3 composite , 2011 .

[69]  K. Rabe,et al.  EUS-guided FNA of centrally located lung tumours following a non-diagnostic bronchoscopy. , 2005, Lung cancer.

[70]  Pai-Chi Li,et al.  Design and fabrication of a 40MHz transducer with enhanced bandwidth , 2008, 2008 IEEE Ultrasonics Symposium.

[71]  Jiyan Dai,et al.  Temperature and electric field dependence of the dielectric property and domain evolution in [001]-oriented 0.34Pb(In1/2Nb1/2)O3–0.25Pb(Mg1/3Nb2/3)O3–0.41PbTiO3 single crystal , 2011 .

[72]  Yohachi Yamashita,et al.  Effect of Stoichiometry on the Dielectric Properties and Life Performance of (Pb0.875Ba0.125) [(Mg1/3Nb2/3)0.5 (Zn1/3Nb2/3)0.3 Ti0.2]O3 Relaxor Dielectric Ceramic: Part I, Dielectric Properties , 1993 .

[73]  Dan Zhou,et al.  Characterization of complete electromechanical constants of rhombohedral 0.72Pb(Mg1/3Nb2/3)–0.28PbTiO3 single crystals , 2008 .

[74]  Jie Chen,et al.  Review: commercialization of piezoelectric single crystals for medical imaging applications , 2005, IEEE Ultrasonics Symposium, 2005..

[75]  Daniel J. Inman,et al.  Piezoelectric Energy Harvesting , 2011 .

[76]  Chang-Hong Hu,et al.  High-frequency ultrasound annular-array imaging. Part I: array design and fabrication , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[77]  F. Foster,et al.  Principles and applications of ultrasound backscatter microscopy , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[78]  Jy Dai,et al.  Study of the ferroelectric domain structure and evolution in PMN-30% PT single crystal by means of piezoresponse force microscopy , 2009 .

[79]  Qifa Zhou,et al.  Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[80]  Thomas R. Shrout,et al.  Relaxor-PT single crystals: Observations and developments , 2009, 2009 18th IEEE International Symposium on the Applications of Ferroelectrics.

[81]  Thomas R. Shrout,et al.  Dielectric behavior of single crystals near the (1−X) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary , 1990 .

[82]  Yung-Chun Lee,et al.  Broadband Poly(vinylidene fluoride-trifluoroethylene) Ultrasound Focusing Transducers for Determining Elastic Constants of Coating Materials , 2009 .

[83]  Qifa Zhou,et al.  An open system for intravascular ultrasound imaging , 2012, 2012 IEEE International Ultrasonics Symposium.

[84]  Junhao Chu,et al.  Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1∕2Nb1∕2)O3–Pb(Mg1∕3Nb2∕3)O3–PbTiO3 ternary single crystal , 2008 .

[85]  Shuvo Roy,et al.  Demonstration of second-harmonic IVUS feasibility with focused broadband miniature transducers , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[86]  K. Cheung,et al.  PMN-PT single crystal focusing transducer fabricated using a mechanical dimpling technique. , 2012, Ultrasonics.

[87]  Jun Luo,et al.  Recent Developments on High Curie Temperature PIN-PMN-PT Ferroelectric Crystals. , 2011, Journal of crystal growth.

[88]  Timothy A. Ritter,et al.  Design of focused single element (50-100 MHz) transducers using lithium niobate , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).