Construction of cellulose structural-color pigments with tunable colors and iridescence/non-iridescence.

[1]  Xiu-li Wang,et al.  Rapid, linear, and highly reliable structural-color switching enabled by thermal regulation of chiral nematic mesophases , 2023, Chemical Engineering Journal.

[2]  H. Kawaguchi,et al.  Light scattering properties of cellulose microcrystals from multiple angles under a magnetic field , 2022, International Journal of Applied Electromagnetics and Mechanics.

[3]  Xiu-li Wang,et al.  Bioinspired Optical Flexible Cellulose Nanocrystal Films with Strain-Adaptive Structural Coloration. , 2022, Biomacromolecules.

[4]  Xiu-li Wang,et al.  Non-iridescent and Wide-Color-Range Structural Coloration Enabled by Cellulose Nanocrystals with a Controlled Long-Range Photonic Structure and Helical Pitch , 2022, ACS Sustainable Chemistry & Engineering.

[5]  Xiu-li Wang,et al.  A Surface Diffusion Barrier Strategy toward Water-Resistant Photonic Materials for Accurate Detection of Ethanol. , 2022, ACS applied materials & interfaces.

[6]  Zhenyu Zhang,et al.  Cellulose Nanocrystal Chiral Photonic Micro-Flakes for Multilevel Anti-Counterfeiting and Identification , 2022, SSRN Electronic Journal.

[7]  Yuanjin Zhao,et al.  Cholesteric Cellulose Liquid Crystals with Multifunctional Structural Colors , 2021, Advanced Functional Materials.

[8]  Xiu-li Wang,et al.  Bio-inspired non-iridescent structural coloration enabled by self-assembled cellulose nanocrystal composite films with balanced ordered/disordered arrays , 2021, Composites Part B: Engineering.

[9]  R. M. Parker,et al.  Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments , 2021, Nature Materials.

[10]  Min Chen,et al.  Angle-independent responsive organogel retroreflective structural color film for colorimetric sensing of humidity and organic vapors , 2021 .

[11]  Jing-Jie Zhang,et al.  Photonic Plasticines with Uniform Structural Colors, High Processability, and Self-Healing Properties. , 2021, Small.

[12]  Xiu-li Wang,et al.  Flexible Photonic Cellulose Nanocrystal Films as a Platform with Multisensing Functions , 2020 .

[13]  Shin‐Hyun Kim,et al.  Photonic Janus Balls with Controlled Magnetic Moment and Density Asymmetry. , 2020, ACS nano.

[14]  Xiu-li Wang,et al.  Chameleon-Inspired Variable Coloration Enabled by a Highly Flexible Photonic Cellulose Film. , 2020, ACS applied materials & interfaces.

[15]  A. Whittaker,et al.  Ultrasensitive Magnetic Tuning of Optical Properties of Films of Cholesteric Cellulose Nanocrystals. , 2020, ACS nano.

[16]  R. M. Parker,et al.  Angular‐Independent Photonic Pigments via the Controlled Micellization of Amphiphilic Bottlebrush Block Copolymers , 2020, Advanced materials.

[17]  J. Lagerwall,et al.  From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals , 2020, Crystals.

[18]  Jintao Zhu,et al.  Supramolecular Photonic Elastomers with Brilliant Structural Colors and Broad‐Spectrum Responsiveness , 2020, Advanced Functional Materials.

[19]  Yuanjin Zhao,et al.  Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains , 2019, Nano Research.

[20]  D. Weitz,et al.  Reduced Graphene Oxide Membrane Induced Robust Structural Colors toward Personal Thermal Management , 2018, ACS Photonics.

[21]  Mingzhu Li,et al.  Patterned Colloidal Photonic Crystals. , 2018, Angewandte Chemie.

[22]  Lei Shi,et al.  Additive Mixing and Conformal Coating of Noniridescent Structural Colors with Robust Mechanical Properties Fabricated by Atomization Deposition. , 2018, ACS nano.

[23]  Xiu-li Wang,et al.  Biomimetic Optical Cellulose Nanocrystal Films with Controllable Iridescent Color and Environmental Stimuli-Responsive Chromism. , 2018, ACS applied materials & interfaces.

[24]  T. Seki,et al.  Bio‐Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background , 2017, Advanced materials.

[25]  M. MacLachlan,et al.  Structure and transformation of tactoids in cellulose nanocrystal suspensions , 2016, Nature Communications.

[26]  Qinglin Wu,et al.  Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships , 2015 .

[27]  M. Milinkovitch,et al.  Photonic crystals cause active colour change in chameleons , 2015, Nature Communications.

[28]  J. Bras,et al.  Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. , 2015, ACS applied materials & interfaces.

[29]  J. Bouchard,et al.  Auto-catalyzed acidic desulfation of cellulose nanocrystals , 2014 .

[30]  T. Torimoto,et al.  Light-induced saturation change in the angle-independent structural coloration of colloidal amorphous arrays , 2014 .

[31]  Lei Shi,et al.  Amorphous Photonic Crystals with Only Short‐Range Order , 2013, Advanced materials.

[32]  Zhongze Gu,et al.  Bioinspired angle-independent photonic crystal colorimetric sensing. , 2013, Chemical communications.

[33]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[34]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[35]  X. H. Liu,et al.  Structural coloration and photonic pseudogap in natural random close-packing photonic structures. , 2010, Optics express.

[36]  A. Parker,et al.  Natural photonics for industrial inspiration , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[38]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  Rodolfo H. Torres,et al.  A Fourier Tool for the Analysis of Coherent Light Scattering by Bio-Optical Nanostructures1 , 2003, Integrative and comparative biology.