Information-driven sensor planning: Navigating a statistical manifold
暂无分享,去创建一个
[1] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[2] Igor Vajda,et al. On Divergences and Informations in Statistics and Information Theory , 2006, IEEE Transactions on Information Theory.
[3] Frédéric Barbaresco,et al. Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery , 2009, ETVC.
[4] D Cochran,et al. An Information-Geometric Approach to Sensor Scheduling , 2012 .
[5] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[6] Shun-ichi Amari,et al. Blind source separation-semiparametric statistical approach , 1997, IEEE Trans. Signal Process..
[7] Alfred O. Hero,et al. Sensor Management: Past, Present, and Future , 2011, IEEE Sensors Journal.
[8] William Moran,et al. Sensor management via riemannian geometry , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[9] Bill Triggs,et al. Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[10] T. N. Sriram. Asymptotics in Statistics–Some Basic Concepts , 2002 .
[11] Alfred O. Hero,et al. Information-Geometric Dimensionality Reduction , 2011, IEEE Signal Processing Magazine.
[12] H. Jeffreys. An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[13] R. Kass,et al. Geometrical Foundations of Asymptotic Inference: Kass/Geometrical , 1997 .
[14] Keith D. Kastella,et al. Foundations and Applications of Sensor Management , 2010 .
[15] R. Kass,et al. Geometrical Foundations of Asymptotic Inference , 1997 .