Renormalization group constructions of topological quantum liquids and beyond

We give a detailed physical argument for the area law for entanglement entropy in gapped phases of matter arising from local Hamiltonians. Our approach is based on renormalization group (RG) ideas and takes a resource oriented perspective. We report four main results. First, we argue for the ``weak area law'': any gapped phase with a unique ground state on every closed manifold obeys the area law. Second, we introduce an RG based classification scheme and give a detailed argument that all phases within the classification scheme obey the area law. Third, we define a special subclass of gapped phases, topological quantum liquids, which captures all examples of current physical relevance, and we rigorously show that topological quantum liquids obey an area law. Fourth, we show that all topological quantum liquids have MERA representations which achieve unit overlap with the ground state in the thermodynamic limit and which have a bond dimension scaling with system size $L$ as ${e}^{c{log}^{d(1+\ensuremath{\delta})}(L)}$ for all $\ensuremath{\delta}g0$. For example, we show that chiral phases in $d=2$ dimensions have an approximate MERA with bond dimension ${e}^{c{log}^{2(1+\ensuremath{\delta})}(L)}$. We discuss extensively a number of subsidiary ideas and results necessary to make the main arguments, including field theory constructions. While our argument for the general area law rests on physically motivated assumptions (which we make explicit) and is therefore not rigorous, we may conclude that ``conventional'' gapped phases obey the area law and that any gapped phase which violates the area law must be a dragon.

[1]  T. Osborne Efficient approximation of the dynamics of one-dimensional quantum spin systems. , 2006, Physical review letters.

[2]  M. B. Hastings,et al.  Lieb-Schultz-Mattis in higher dimensions , 2004 .

[3]  W. Unruh Notes on black-hole evaporation , 1976 .

[4]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[5]  Jens Eisert,et al.  Real-space renormalization yields finite correlations. , 2010, Physical review letters.

[6]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[7]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[8]  Inflation and the dS/CFT Correspondence , 2001, hep-th/0110087.

[9]  A. Polkovnikov,et al.  Adiabatic Perturbation Theory: From Landau–Zener Problem to Quenching Through a Quantum Critical Point , 2009, 0910.2236.

[10]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[11]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[12]  Michael Levin,et al.  Generalizations and limitations of string-net models , 2014, 1402.4081.

[13]  Sandy Irani,et al.  Ground state entanglement in one-dimensional translationally invariant quantum systems , 2009, 0901.1107.

[14]  M. B. Hastings,et al.  Solving gapped Hamiltonians locally , 2006 .

[15]  G. Vidal,et al.  Exact entanglement renormalization for string-net models , 2008, 0806.4583.

[16]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[17]  General entanglement scaling laws from time evolution. , 2006, Physical review letters.

[18]  G. Evenbly,et al.  Frustrated antiferromagnets with entanglement renormalization: ground state of the spin-1/2 Heisenberg model on a kagome lattice. , 2009, Physical review letters.

[19]  V. Mukhanov,et al.  Introduction to Quantum Effects in Gravity , 2007 .

[20]  B. Nachtergaele,et al.  Approximating the ground state of gapped quantum spin systems , 2009, 0904.4642.

[21]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[22]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[23]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[24]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[25]  M. Raamsdonk,et al.  Gravitation from entanglement in holographic CFTs , 2013, 1312.7856.

[26]  D. Freed Short-range entanglement and invertible field theories , 2014, 1406.7278.

[27]  Joseph Polchinski Effective field theory and the Fermi surface , 1992 .

[28]  C'edric B'eny Causal structure of the entanglement renormalization ansatz , 2011, 1110.4872.

[29]  Thomas Appelquist Dimensional reduction in quantum gravity , 2008 .

[30]  S. Mossaheb A Note on Fourier Transforms , 1979 .

[31]  A. Ferris,et al.  Fourier transform for fermionic systems and the spectral tensor network. , 2013, Physical review letters.

[32]  Tobias J. Osborne Simulating adiabatic evolution of gapped spin systems , 2007 .

[33]  U. Vazirani,et al.  Improved one-dimensional area law for frustration-free systems , 2011, 1111.2970.

[34]  S. Michalakis,et al.  Stability of the Area Law for the Entropy of Entanglement , 2012, 1206.6900.

[35]  Frank Verstraete,et al.  Entanglement rates and area laws. , 2013, Physical review letters.

[36]  Brian Swingle,et al.  Constructing holographic spacetimes using entanglement renormalization , 2012, 1209.3304.

[37]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and the Exponential Clustering Theorem , 2005, math-ph/0506030.

[38]  M. B. Hastings,et al.  Locality in Quantum Systems , 2010, 1008.5137.

[39]  M. B. Hastings Entropy and entanglement in quantum ground states , 2007 .

[40]  M. Raamsdonk,et al.  Comments on quantum gravity and entanglement , 2009, 0907.2939.

[41]  Lluis Masanes,et al.  Area law for the entropy of low-energy states , 2009, 0907.4672.

[42]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[43]  G. Evenbly,et al.  Class of highly entangled many-body states that can be efficiently simulated. , 2012, Physical review letters.

[44]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[45]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[46]  M. B. Hastings,et al.  Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance , 2005 .

[47]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[48]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[49]  X. Wen Projective construction of non-Abelian quantum Hall liquids , 1998, cond-mat/9811111.

[50]  B. Swingle Structure of entanglement in regulated Lorentz invariant field theories , 2013, 1304.6402.

[51]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[52]  A. Vishwanath,et al.  Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach , 2012, 1205.3156.

[53]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[54]  L. Susskind The world as a hologram , 1994, hep-th/9409089.

[55]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[56]  Fernando G. S. L. Brandão,et al.  Exponential Decay of Correlations Implies Area Law , 2012, Communications in Mathematical Physics.

[57]  B. Swingle Entanglement entropy and the Fermi surface. , 2009, Physical review letters.

[58]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[59]  Jeongwan Haah Bifurcation in entanglement renormalization group flow of a gapped spin model , 2013, 1310.4507.

[60]  I. Klich On the stability of topological phases on a lattice , 2009, 0912.0945.

[61]  Xiao-Gang Wen,et al.  Tensor-product representations for string-net condensed states , 2008, 0809.2821.

[62]  Beni Yoshida,et al.  Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes , 2010, 1007.4601.

[63]  F. Verstraete,et al.  Entanglement renormalization for quantum fields in real space. , 2011, Physical review letters.

[64]  David Poulin,et al.  Tradeoffs for reliable quantum information storage in 2D systems , 2010, Quantum Cryptography and Computing.

[65]  D. Poulin,et al.  Quantum Markov Networks and Commuting Hamiltonians , 2012, 1206.0755.

[66]  J. Maldacena,et al.  Time evolution of entanglement entropy from black hole interiors , 2013, 1303.1080.

[67]  Topological quantum glassiness , 2011, 1108.2051.

[68]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[69]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[70]  Umesh Vazirani,et al.  An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.

[71]  G. Gallavotti,et al.  Renormalization-group approach to the theory of the Fermi surface. , 1990, Physical review. B, Condensed matter.

[72]  The Efficiency of a Cluster Algorithm for the Quantum Heisenberg Model on a Kagome Lattice , 2010 .

[73]  S. Fulling,et al.  Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time , 1973 .

[74]  M. Hastings Topology and phases in fermionic systems , 2007, 0710.3324.

[75]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[76]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[77]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[78]  Beni Yoshida,et al.  Exotic topological order in fractal spin liquids , 2013, 1302.6248.

[79]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[80]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[81]  Justyna P. Zwolak,et al.  Stability of Frustration-Free Hamiltonians , 2011, 1109.1588.

[82]  M. Lewenstein,et al.  Frustration, area law, and interference in quantum spin models. , 2007, Physical Review Letters.

[83]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[84]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[85]  Isaac H. Kim Determining the structure of the real-space entanglement spectrum from approximate conditional independence , 2013 .

[86]  F. Verstraete,et al.  Grassmann tensor network states and its renormalization for strongly correlated fermionic and bosonic states , 2010, 1004.2563.

[87]  A. Vishwanath,et al.  Physics of three dimensional bosonic topological insulators: Surface Deconfined Criticality and Quantized Magnetoelectric Effect , 2012, 1209.3058.

[88]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[89]  Robert König,et al.  Simplifying quantum double Hamiltonians using perturbative gadgets , 2009, Quantum Inf. Comput..

[90]  Niel de Beaudrap,et al.  Ground states of unfrustrated spin Hamiltonians satisfy an area law , 2010, 1009.3051.

[91]  M. Hastings,et al.  Markov entropy decomposition: a variational dual for quantum belief propagation. , 2010, Physical review letters.

[92]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[93]  Andrew Strominger The dS/CFT correspondence , 2001 .

[94]  U. Vazirani,et al.  Quantum Hamiltonian complexity and the detectability lemma , 2010, 1011.3445.

[95]  M. Freedman,et al.  Z(2)-Systolic Freedom and Quantum Codes , 2002 .

[96]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[97]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[98]  G. Vidal,et al.  Entanglement renormalization and topological order. , 2007, Physical review letters.

[99]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[100]  Eyvind H. Wichmann,et al.  On the duality condition for a Hermitian scalar field , 1975 .

[101]  Wen,et al.  Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. , 1990, Physical review. B, Condensed matter.

[102]  Robert B. Laughlin,et al.  Quantized Hall conductivity in two-dimensions , 1981 .

[103]  B. Swingle,et al.  Area law violations in a supersymmetric model , 2012, 1202.2367.

[104]  Elliott H. Lieb,et al.  Entropy inequalities , 1970 .

[105]  Juan Maldacena,et al.  Entanglement entropy in de Sitter space , 2012, 1210.7244.

[106]  M. Zaletel,et al.  Exact matrix product states for quantum Hall wave functions , 2012, 1208.4862.

[107]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[108]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[109]  Bipartite entanglement and entropic boundary law in lattice spin systems (10 pages) , 2004, quant-ph/0409073.

[110]  Brian Swingle,et al.  Reconstructing quantum states from local data. , 2014, Physical review letters.

[111]  P. Davies Scalar production in Schwarzschild and Rindler metrics , 1975 .

[112]  G. Rigolin,et al.  Beyond the Quantum Adiabatic Approximation: Adiabatic Perturbation Theory , 2008, 0807.1363.

[113]  Samuel A. Ocko,et al.  Nonperturbative gadget for topological quantum codes. , 2011, Physical review letters.

[114]  G. Nenciu,et al.  Linear adiabatic theory. Exponential estimates , 1993 .

[115]  N. Read,et al.  Tensor network trial states for chiral topological phases in two dimensions , 2013, 1307.7726.

[116]  Masahiro Nozaki,et al.  Holographic geometry of entanglement renormalization in quantum field theories , 2012, 1208.3469.

[117]  Isaac H. Kim Long-range entanglement is necessary for a topological storage of quantum information. , 2013, Physical review letters.

[118]  M. Raamsdonk,et al.  Universality of Gravity from Entanglement , 2014, 1405.2933.

[119]  A. Vishwanath,et al.  Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions , 2011, 1108.4038.

[120]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[121]  M. B. Hastings,et al.  A Short Proof of Stability of Topological Order under Local Perturbations , 2010, 1001.4363.

[122]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[123]  Notes on Some Questions in Mathematical Physics and Quantum Information , 2014, 1404.4327.

[124]  D. Petz Sufficient subalgebras and the relative entropy of states of a von Neumann algebra , 1986 .

[125]  J. Cirac,et al.  Symmetries and boundary theories for chiral projected entangled pair states , 2014, 1405.0447.

[126]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[127]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[128]  G. Evenbly,et al.  Tensor Network States and Geometry , 2011, 1106.1082.

[129]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[130]  Daniel Gottesman,et al.  Entanglement versus gap for one-dimensional spin systems , 2009, 0901.1108.