A flexible extreme value mixture model

Extreme value theory is used to derive asymptotically motivated models for unusual or rare events, e.g. the upper or lower tails of a distribution. A new flexible extreme value mixture model is proposed combining a non-parametric kernel density estimator for the bulk of the distribution with an appropriate tail model. The complex uncertainties associated with threshold choice are accounted for and new insights into the impact of threshold choice on density and quantile estimates are obtained. Bayesian inference is used to account for all uncertainties and enables inclusion of expert prior information, potentially overcoming the inherent sparsity of extremal data. A simulation study and empirical application for determining normal ranges for physiological measurements for pre-term infants is used to demonstrate the performance of the proposed mixture model. The potential of the proposed model for overcoming the lack of consistency of likelihood based kernel bandwidth estimators when faced with heavy tailed distributions is also demonstrated.

[1]  D. Gamerman,et al.  Bayesian analysis of extreme events with threshold estimation , 2004 .

[2]  J. L. Wadsworth,et al.  Accounting for choice of measurement scale in extreme value modeling , 2010, 1011.3612.

[3]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[4]  Rob J. Hyndman,et al.  A Bayesian approach to bandwidth selection for multivariate kernel density estimation , 2006, Comput. Stat. Data Anal..

[5]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[6]  E. F. Schuster,et al.  On the Nonconsistency of Maximum Likelihood Nonparametric Density Estimators , 1981 .

[7]  Mark J. Brewer,et al.  A Bayesian model for local smoothing in kernel density estimation , 2000, Stat. Comput..

[8]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[9]  Ali S. Hadi,et al.  Extreme Value and Related Models with Applications in Engineering and Science , 2004 .

[10]  Robert P. W. Duin,et al.  On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.

[11]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[12]  Adrian Bowman A note on consistency of the kernel method for the analysis of categorical data , 1980 .

[13]  D. Dupuis Exceedances over High Thresholds: A Guide to Threshold Selection , 1999 .

[14]  David W. Scott,et al.  Monte Carlo Study of Three Data-Based Nonparametric Probability Density Estimators , 1981 .

[15]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[16]  M. C. Jones,et al.  Simple boundary correction for kernel density estimation , 1993 .

[17]  Jonathan A. Tawn,et al.  A Bayesian Analysis of Extreme Rainfall Data , 1996 .

[18]  William F. Eddy Computer Science and Statistics: Proceedings of the 13th Symposium on the Interface , 1981 .

[19]  Sylvia Richardson,et al.  Inference and monitoring convergence , 1995 .

[20]  James Pickands,et al.  The two-dimensional Poisson process and extremal processes , 1971, Journal of Applied Probability.

[21]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[22]  R. Reiss,et al.  Statistical Analysis of Extreme Values-with applications to insurance , 1997 .

[23]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[24]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[25]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[26]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[27]  Mark J. Brewer A Modelling Approach for Bandwidth Selection in Kernel Density Estimation , 1998, COMPSTAT.

[28]  Yoshua Bengio,et al.  A hybrid Pareto model for asymmetric fat-tailed data: the univariate case , 2009 .

[29]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[30]  A. Frigessi,et al.  A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection , 2002 .

[31]  Hedibert Freitas Lopes,et al.  Data driven estimates for mixtures , 2004, Comput. Stat. Data Anal..

[32]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[33]  Stuart G. Coles,et al.  Bayesian methods in extreme value modelling: a review and new developments. , 1996 .

[34]  A. O'Hagan,et al.  Accounting for threshold uncertainty in extreme value estimation , 2006 .

[35]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .