Detecting subject-specific activations using fuzzy clustering

Inter-subject variability in evoked brain responses is attracting attention because it may reflect important variability in structure–function relationships over subjects. This variability could be a signature of degenerate (many-to-one) structure–function mappings in normal subjects or reflect changes that are disclosed by brain damage. In this paper, we describe a non-iterative fuzzy clustering algorithm (FCP: fuzzy clustering with fixed prototypes) for characterizing inter-subject variability in between-subject or second-level analyses of fMRI data. The approach identifies the contribution of each subject to response profiles in voxels surviving a classical F-statistic criterion. The output identifies subjects who drive activation in specific cortical regions (local effects) or in voxels distributed across neural systems (global effects). The sensitivity of the approach was assessed in 38 normal subjects performing an overt naming task. FCP revealed that several subjects had either abnormally high or abnormally low responses. FCP may be particularly useful for characterizing outlier responses in rare patients or heterogeneous populations. In these cases, atypical activations may not be detected by standard tests, under parametric assumptions. The advantage of using FCP is that it searches all voxels systematically and can identify atypical activation patterns in a quantitative and unsupervised manner.

[1]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[2]  Karl J. Friston,et al.  Degeneracy and cognitive anatomy , 2002, Trends in Cognitive Sciences.

[3]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[4]  Kenneth Hugdahl,et al.  Controlling for individual differences in fMRI brain activation to tones, syllables, and words , 2006, NeuroImage.

[5]  Thomas E. Nichols,et al.  Diagnosis of single‐subject and group fMRI data with SPMd , 2006, Human brain mapping.

[6]  S. J. Devlin,et al.  Robust estimation and outlier detection with correlation coefficients , 1975 .

[7]  Piotr Bogorodzki,et al.  Structural group classification technique based on regional fMRI BOLD responses , 2005, IEEE Transactions on Medical Imaging.

[8]  C. Windischberger,et al.  Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis. , 1998, Magnetic resonance imaging.

[9]  Harold Goodglass,et al.  Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method , 2004, NeuroImage.

[10]  Angela R Laird,et al.  Meta‐analyses of object naming: Effect of baseline , 2005, Human brain mapping.

[11]  Aapo Hyvärinen,et al.  Independent component analysis of fMRI group studies by self-organizing clustering , 2005, NeuroImage.

[12]  D. W. Zimmerman A Note on the Influence of Outliers on Parametric and Nonparametric Tests , 1994 .

[13]  C. Price,et al.  Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke. , 2005, Brain : a journal of neurology.

[14]  Takashi Tsukiura,et al.  The effect of encoding strategies on medial temporal lobe activations during the recognition of words: an event-related fMRI study , 2005, NeuroImage.

[15]  P. Boesiger,et al.  A new correlation‐based fuzzy logic clustering algorithm for FMRI , 1998, Magnetic resonance in medicine.

[16]  Laurie Davies,et al.  The identification of multiple outliers , 1993 .

[17]  Stephen M Smith,et al.  Variability in fMRI: A re‐examination of inter‐session differences , 2005, Human brain mapping.

[18]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[19]  Jodi D. Edwards,et al.  An fMRI investigation of strategies for word recognition. , 2005, Brain research. Cognitive brain research.

[20]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[21]  Douglas M. Hawkins Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.

[22]  K. Heilman,et al.  Functional imaging: heterogeneity in task strategy and functional anatomy and the case for individual analysis. , 1998, Neuropsychiatry, neuropsychology, and behavioral neurology.

[23]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[24]  Jason W. Osborne,et al.  The power of outliers (and why researchers should ALWAYS check for them) , 2004 .

[25]  Jérémie Mattout,et al.  Multivariate Group Effect Analysis in Functional Magnetic Resonance Imaging , 2003, IPMI.

[26]  Karl J. Friston,et al.  Degenerate neuronal systems sustaining cognitive functions , 2004, Journal of anatomy.

[27]  Charles R. G. Guttmann,et al.  Functional MRI of auditory verbal working memory: long-term reproducibility analysis , 2004, NeuroImage.

[28]  Kurt Hornik,et al.  A quantitative comparison of functional MRI cluster analysis , 2004, Artif. Intell. Medicine.

[29]  Karl J. Friston,et al.  Multisubject fMRI Studies and Conjunction Analyses , 1999, NeuroImage.

[30]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[31]  A. Wunderlich,et al.  Brain activation during human navigation: gender-different neural networks as substrate of performance , 2000, Nature Neuroscience.

[32]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[33]  F Lazeyras,et al.  Language representation in a patient with a dominant right hemisphere: fMRI evidence for an intrahemispheric reorganisation , 2001, Neuroreport.

[34]  Karl J. Friston,et al.  Identification of degenerate neuronal systems based on intersubject variability , 2006, NeuroImage.

[35]  M. Petrides,et al.  Cognitive Strategies Dependent on the Hippocampus and Caudate Nucleus in Human Navigation: Variability and Change with Practice , 2003, The Journal of Neuroscience.

[36]  H. Oswald,et al.  Multiresolution fuzzy clustering of functional MRI data , 2003, Neuroradiology.

[37]  C. Metz Basic principles of ROC analysis. , 1978, Seminars in nuclear medicine.

[38]  Mark D'Esposito,et al.  Dissociating Age-related Changes in Cognitive Strategy and Neural Efficiency Using Event- related fMRI , 2005, Cortex.

[39]  J. Gastwirth ON ROBUST PROCEDURES , 1966 .

[40]  Nicole A Lazar,et al.  Assessing the sensitivity of fMRI group maps , 2004, NeuroImage.

[41]  Abraham Kandel,et al.  Discussion: On the Very Real Distinction Between Fuzzy and Statistical Methods , 1995 .

[42]  Claus Lamm,et al.  Fuzzy cluster analysis of high-field functional MRI data , 2003, Artif. Intell. Medicine.

[43]  B. Ardekani,et al.  Controlling the false positive rate in fuzzy clustering using randomization: application to fMRI activation detection. , 2004, Magnetic resonance imaging.

[44]  L. Jacoby,et al.  Strategy-dependent changes in memory: Effects on behavior and brain activity , 2003, Cognitive, affective & behavioral neuroscience.

[45]  Thomas E. Nichols,et al.  Diagnosis and exploration of massively univariate neuroimaging models , 2003, NeuroImage.

[46]  W. Penny,et al.  Random-Effects Analysis , 2002 .

[47]  Eric T. Bradlow,et al.  Case Influence Analysis in Bayesian Inference , 1997 .

[48]  V Bosch,et al.  Statistical analysis of multi‐subject fMRI data: Assessment of focal activations , 2000, Journal of magnetic resonance imaging : JMRI.

[49]  J. L. Rasmussen,et al.  Evaluating Outlier Identification Tests: Mahalanobis D Squared and Comrey Dk. , 1988, Multivariate behavioral research.

[50]  S. Ruan,et al.  A multistep Unsupervised Fuzzy Clustering Analysis of fMRI time series , 2000, Human brain mapping.

[51]  J. Stevens,et al.  Outliers and influential data points in regression analysis. , 1984 .

[52]  Jean-Baptiste Poline,et al.  Group analysis in functional neuroimaging: selecting subjects using similarity measures , 2003, NeuroImage.

[53]  W. D. Penny,et al.  Random-Effects Analysis , 2002 .

[54]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[55]  L O Hall,et al.  Medical image analysis with fuzzy models , 1997, Statistical methods in medical research.

[56]  K. Chaloner,et al.  A Bayesian approach to outlier detection and residual analysis , 1988 .

[57]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[58]  Jörn Diedrichsen,et al.  Detecting and adjusting for artifacts in fMRI time series data , 2005, NeuroImage.

[59]  Mohamed-Jalal Fadili,et al.  On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series , 2001, Medical Image Anal..

[60]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[61]  J. Démonet,et al.  Functional MRI Follow-Up Study of Language Processes in Healthy Subjects and During Recovery in a Case of Aphasia , 2004, Stroke.

[62]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[63]  Jean M. Vettel,et al.  Functional reorganization of spatial transformations after a parietal lesion , 2004, Neurology.

[64]  H. Mizuhara,et al.  Peculiarity oriented fMRI brain data analysis for studying human multi-perception mechanism , 2004, Cognitive Systems Research.

[65]  Alan Wee-Chung Liew,et al.  Fuzzy image clustering incorporating spatial continuity , 2000 .

[66]  R. R. Hocking The analysis and selection of variables in linear regression , 1976 .

[67]  Matthew C. Keller,et al.  Increased sensitivity in neuroimaging analyses using robust regression , 2005, NeuroImage.

[68]  M. Brady,et al.  Rejecting outliers and estimating errors in an orthogonal-regression framework , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[69]  J A Sorenson,et al.  ROC methods for evaluation of fMRI techniques , 1996, Magnetic resonance in medicine.

[70]  Beatriz Luna,et al.  Combining Brains: A Survey of Methods for Statistical Pooling of Information , 2002, NeuroImage.

[71]  Markus Svensén,et al.  ICA of fMRI Group Study Data , 2002, NeuroImage.