On the binary quadratic residue system with noncoprime moduli
暂无分享,去创建一个
[1] G. Jullien,et al. The modified quadratic residue number system (MQRNS) for complex high-speed signal processing , 1986 .
[2] G.A. Jullien,et al. An algorithm for multiplication module (2/sup n/+1) , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.
[3] L. Leibowitz. A simplified binary arithmetic for the Fermat number transform , 1976 .
[4] A. Skavantzos,et al. New multi-moduli residue and quadratic residue systems for large dynamic ranges , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.
[5] A. Skavantzos. Using quadratic residue arithmetic for computing skew cyclic convolutions , 1991 .
[6] G. Jullien,et al. An algorithm for multiplication modulo (2/spl and/N-1) , 1996, Proceedings of the 39th Midwest Symposium on Circuits and Systems.
[7] F. J. Taylor,et al. Residue Arithmetic A Tutorial with Examples , 1984, Computer.
[8] Fred J. Taylor,et al. A Radix-4 FFT Using Complex RNS Arithmetic , 1985, IEEE Transactions on Computers.
[9] Michael A. Soderstrand,et al. Residue number system arithmetic: modern applications in digital signal processing , 1986 .
[10] Trieu-Kien Truong,et al. A Complex Integer Multiplier Using the Quadratic-Polynomial Residue Number System with Numbers of Form 22n + 1 , 1987, IEEE Trans. Computers.
[11] F. Taylor. A single modulus complex ALU for signal processing , 1985, IEEE Trans. Acoust. Speech Signal Process..