Modeling Microbial Dynamics in Heterogeneous Environments: Growth on Soil Carbon Sources

[1]  H. Berg Random Walks in Biology , 2018 .

[2]  S. Blagodatsky,et al.  Stimulation of r- vs. K-selected microorganisms by elevated atmospheric CO(2) depends on soil aggregate size. , 2009, FEMS microbiology ecology.

[3]  F. Hellweger,et al.  A bunch of tiny individuals—Individual-based modeling for microbes , 2009 .

[4]  S. Allison,et al.  Stoichiometry of soil enzyme activity at global scale. , 2008, Ecology letters.

[5]  S. Allison,et al.  Resistance, resilience, and redundancy in microbial communities , 2008, Proceedings of the National Academy of Sciences.

[6]  Veerle Cnudde,et al.  Comparison of different nano- and micro-focus X-ray computed tomography set-ups for the visualization of the soil microstructure and soil organic matter , 2008, Comput. Geosci..

[7]  Rainer Horn,et al.  Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography , 2008 .

[8]  Ferdi L. Hellweger,et al.  Spatially explicit individual-based modeling using a fixed super-individual density , 2008, Comput. Geosci..

[9]  E. Perrier,et al.  A new, offer versus demand, modelling approach to assess the impact of micro-organisms spatio-temporal population dynamics on soil organic matter decomposition rates , 2007 .

[10]  A. Brauman,et al.  MIOR: an individual‐based model for simulating the spatial patterns of soil organic matter microbial decomposition , 2007 .

[11]  F. Azam,et al.  Microbial structuring of marine ecosystems , 2007, Nature Reviews Microbiology.

[12]  John W. Crawford,et al.  Visualization, modelling and prediction in soil microbiology , 2007, Nature Reviews Microbiology.

[13]  Shmulik P. Friedman,et al.  Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review , 2007 .

[14]  P. V. van Bodegom,et al.  Microbial Maintenance: A Critical Review on Its Quantification , 2007, Microbial ecology.

[15]  Les Dethlefsen,et al.  Performance of the Translational Apparatus Varies with the Ecological Strategies of Bacteria , 2007, Journal of bacteriology.

[16]  Lee R Lynd,et al.  Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum , 2006, Proceedings of the National Academy of Sciences.

[17]  D. Moorhead,et al.  A THEORETICAL MODEL OF LITTER DECAY AND MICROBIAL INTERACTION , 2006 .

[18]  J R Saunders,et al.  A rule-based approach to the modelling of bacterial ecosystems. , 2006, Bio Systems.

[19]  Marta Ginovart,et al.  Individual-based Modelling of microbial activity to study mineralization of C and N and nitrification process in soil , 2005 .

[20]  S. Allison Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments , 2005 .

[21]  J. L. Smith,et al.  Distribution of two C cycle enzymes in soil aggregates of a prairie chronosequence , 2005, Biology and Fertility of Soils.

[22]  A. Narang,et al.  The dynamics of single-substrate continuous cultures: the role of ribosomes. , 2005, Journal of theoretical biology.

[23]  Roel Merckx,et al.  Spatial location of carbon decomposition in the soil pore system , 2004 .

[24]  J. Six,et al.  A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics , 2004 .

[25]  I M Young,et al.  Interactions and Self-Organization in the Soil-Microbe Complex , 2004, Science.

[26]  J. Crawford,et al.  In Situ Spatial Patterns of Soil Bacterial Populations, Mapped at Multiple Scales, in an Arable Soil , 2002, Microbial Ecology.

[27]  I. S. Pretorius,et al.  Microbial Cellulose Utilization: Fundamentals and Biotechnology , 2002, Microbiology and Molecular Biology Reviews.

[28]  S. Grego,et al.  Eco-physiological Characterization of Soil Bacterial Populations in Different States of Growth , 2002, Microbial Ecology.

[29]  J W Wimpenny,et al.  Individual-based modelling of biofilms. , 2001, Microbiology.

[30]  K. Svensson,et al.  Reversible transition between active and dormant microbial states in soil. , 2001, FEMS microbiology ecology.

[31]  A. Konopka Microbial physiological state at low growth rate in natural and engineered ecosystems. , 2000, Current opinion in microbiology.

[32]  D. Moorhead,et al.  Simulated patterns of litter decay predict patterns of extracellular enzyme activities , 2000 .

[33]  G. Booth,et al.  BacSim, a simulator for individual-based modelling of bacterial colony growth. , 1998, Microbiology.

[34]  A. Salyers,et al.  Solving the problem of how to eat something as big as yourself: Diverse bacterial strategies for degrading polysaccharides , 1996, Journal of Industrial Microbiology.

[35]  C. Haynes,et al.  Binding of the cellulose-binding domain of exoglucanase Cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Chenu,et al.  Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential , 1996 .

[37]  D. Moorhead,et al.  Decomposition processes: modelling approaches and applications , 1996 .

[38]  N. Panikov,et al.  Microbial Growth Kinetics , 1995 .

[39]  D. Ramkrishna,et al.  Metabolic regulation in bacterial continuous cultures: I , 1991, Biotechnology and bioengineering.

[40]  M. V. van Loosdrecht,et al.  Influence of interfaces on microbial activity. , 1990, Microbiological reviews.

[41]  J. L. Smith Sensitivity analysis of critical parameters in microbial maintenance-energy models , 1989, Biology and Fertility of Soils.

[42]  K. Domsch,et al.  Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state , 1985, Biology and Fertility of Soils.

[43]  G. Bratbak,et al.  Bacterial dry matter content and biomass estimations , 1984, Applied and environmental microbiology.

[44]  A A Huang,et al.  Kinetic studies on insoluble cellulose–cellulase system , 1975, Biotechnology and bioengineering.

[45]  J C Ensign,et al.  Long-Term Starvation Survival of Rod and Spherical Cells of Arthrobacter crystallopoietes , 1970, Journal of bacteriology.

[46]  Eric R. Pianka,et al.  On r- and K-Selection , 1970, The American Naturalist.

[47]  Haluk Resat,et al.  Spatial aspects in biological system simulations. , 2011, Methods in enzymology.

[48]  D. Weichart,et al.  How do non-differentiating bacteria adapt to starvation? , 2004, Antonie van Leeuwenhoek.

[49]  M. Sizova,et al.  A kinetic method for estimating the biomass of microbial functional groups in soil , 1996 .

[50]  L. Brussaard,et al.  Relationships between habitable pore space, soil biota and mineralization rates in grassland soils , 1993 .

[51]  D. Ramkrishna,et al.  Metabolic regulation in bacterial continuous cultures: I. , 1991, Biotechnology and bioengineering.

[52]  K. Domsch,et al.  Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions , 1985 .