Diverse magma sources for the Himalayan leucogranites: Evidence from B-Sr-Nd isotopes

Abstract The Himalayan orogen is featured by widespread S-type leucogranites (ca. 45 to 9 Ma) formed primarily from the partial melting of metapelites (800–480 Ma), and minor from the partial melting of amphibolite with subordinate metapelites. The Ama Drime gneiss and Mabja leucogranite pluton are both located at the footwall of the NS-trending Xainza–Dinggye normal fault in the central part of the Himalayan orogen, with published eNd(t) values of −21.0 to −19.6 and − 19.3 to −18.3 and 87Sr/86Sr(t) values of 0.90954–0.92574 and 0.84853–0.85474, respectively. In this study, we presented new SHRIMP zircon U-Pb ages and laser ablation-multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) tourmaline boron isotope data on the metamorphic rocks and leucogranites of the Himalayan orogen. The weighted mean 207Pb/206Pb age of the zircon cores of the Ama Drime gneiss (T0446-2-3) is 1854 ± 4 Ma. The tourmaline δ11B values of the Ama Drime gneiss (T0446-1-6) are −17.6 to −14.3‰, similar to those of the Mabja leucogranite (T0436-4, −18.9 to −17.4‰). In contrast, the tourmaline δ11B values of the Quedang metapelite (T0389-18) and its partial melting product – Malashan leucogranite (T0659-12A-3) are substantially higher, i.e., −15.3 to −12.5‰ and − 16.2 to −8.0‰, respectively. The tourmaline δ11B values of the Yadoi leucogranite (T0321-4), derived from partial melting of amphibolite, range from −8.4 to −5.4‰. Therefore, the tourmaline B-isotopes and Sr-Nd-isotopes results are consistent, and may have reflected an E-W extension along the southern Tibetan rift system, indicating a late Miocene anatexis in the North Himalaya region. The melts derived from the partial melting of metapelites and mature crustal materials (e.g., Paleoproterozoic Ama Drime gneiss) ascended along the N-S trending Xainza-Dinggye normal fault, and were subsequently emplaced in the Tethyan Himalaya sequence.

[1]  N. Rogers,et al.  Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform , 2004 .

[2]  Wang Xibin,et al.  Structure and evolution of the Himalaya–Tibet orogenic belt , 1984, Nature.

[3]  E. Draganits,et al.  The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement , 2001, Geological Magazine.

[4]  D. Wyman,et al.  Eocene north-south trending dikes in central Tibet: New constraints on the timing of east-west extension with implications for early plateau uplift? , 2010 .

[5]  F. Liu,et al.  In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS , 2010 .

[6]  L. Zeng,et al.  Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet , 2014 .

[7]  C. Dong,et al.  High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet , 2012 .

[8]  P. DeCelles,et al.  The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes , 2001 .

[9]  A. Meixner,et al.  Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation , 2008 .

[10]  F. Rolfo,et al.  Two contrasting eclogite types in the Himalayas: implications for the Himalayan orogeny. , 2000 .

[11]  R. Wirth,et al.  The geochemical cycle of boron: Constraints from boron isotope partitioning experiments between mica and fluid , 2005 .

[12]  M. Palmer,et al.  Boron isotope systematics of tourmaline from granites and pegmatites; a synthesis , 1998 .

[13]  Xin Dong,et al.  Early Eocene (c. 50 Ma) collision of the Indian and Asian continents: Constraints from the North Himalayan metamorphic rocks, southeastern Tibet , 2016 .

[14]  M. Wilson,et al.  The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting , 2012 .

[15]  J. Spotila,et al.  Orogen-parallel extension and exhumation enhanced by denudation in the trans-Himalayan Arun River gorge, Ama Drime Massif, Tibet-Nepal , 2008 .

[16]  L. Zeng,et al.  Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications , 2008 .

[17]  N. Harris,et al.  Experimental Constraints on Himalayan Anatexis , 1998 .

[18]  G. Gehrels,et al.  Tectonic implications of U-Pb zircon ages of the himalayan orogenic belt in nepal , 2000, Science.

[19]  L. Zeng,et al.  Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust , 2011 .

[20]  F. Albarède,et al.  Secular boron isotope variations in the continental crust: an ion microprobe study , 1992 .

[21]  P. Molnar,et al.  Active tectonics of Tibet , 1978 .

[22]  Barbara L. Dutrow,et al.  Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past , 2011 .

[23]  K. Hou,et al.  Eocene magmatism in the Tethyan Himalaya, southern Tibet , 2014 .

[24]  Paul D. Asimow,et al.  Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites , 2017 .

[25]  D. Gray,et al.  Crustal architecture of the Himalayan metamorphic front in eastern Nepal , 2006 .

[26]  M. Palmer,et al.  Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, South Tibetan Himalaya: Implication for their formation from B-rich melt to hydrothermal fluids , 2015 .

[27]  Fu-Yuan Wu,et al.  Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model , 2014 .

[28]  J. Davidson,et al.  Insights into Collisional Magmatism from Isotopic Fingerprints of Melting Reactions , 2002, Science.

[29]  S. Peacock,et al.  Beryllium and boron in subduction zone minerals: An ion microprobe study , 1993 .

[30]  B. N. Upreti,et al.  An overview of the stratigraphy and tectonics of the Nepal Himalaya , 1999 .

[31]  G. Seward,et al.  Kinematic evolution of the Ama Drime detachment: Insights into orogen-parallel extension and exhumation of the Ama Drime Massif, Tibet–Nepal , 2010 .

[32]  T. Harrison,et al.  When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite , 1997 .

[33]  An Yin,et al.  Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation , 2006 .

[34]  N. Harris,et al.  Decompression and anatexis of Himalayan metapelites , 1994 .

[35]  R. Korsch,et al.  TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology , 2003 .

[36]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[37]  N. Harris,et al.  Fluid-enhanced melting during prograde metamorphism , 2001, Journal of the Geological Society.

[38]  H. Marschall,et al.  Syros metasomatic tourmaline: evidence for very high-δ11B fluids in subduction zones , 2006 .

[39]  T. Imayama,et al.  Nd isotopic data reveal the material and tectonic nature of the Main Central Thrust zone in Nepal Himalaya , 2008 .

[40]  K. Hodges,et al.  Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east–west extension , 1995, Nature.

[41]  T. Harrison,et al.  Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet , 2008 .

[42]  Stéphane Guillot,et al.  Geochemical constraints on the bimodal origin of High Himalayan leucogranites , 1995 .

[43]  S. Kelley,et al.  Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism , 2001 .

[44]  Hou Kejun,et al.  The Mid-Eocene subvolcanic field in the Lhunze-Qiaga area,Tethyan Himalaya,southern Tibet:A high-level magmatic suite related to the Yardio two-mica granite , 2011 .

[45]  Shao‐Yong Jiang,et al.  Tourmaline Isotopes: No Element Left Behind , 2011 .

[46]  Potsdam,et al.  Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T , 2012, 1210.1674.

[47]  B. Burchfiel,et al.  The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt , 1992 .

[48]  L. Kirstein,et al.  Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics , 2014 .

[49]  C. Deniel,et al.  Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan leucogranites , 1987 .

[50]  Jeffrey Lee,et al.  Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet , 2004 .

[51]  R. Armijo,et al.  Late Cenozoic right‐lateral strike‐slip faulting in southern Tibet , 1989 .

[52]  Dunyi Liu,et al.  The South Tibet detachment shear zone in the Dinggye area: Time constraints on extrusion models of the Himalayas , 2010 .

[53]  N. Harris,et al.  Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya , 1993 .

[54]  M. Searle,et al.  Defining the Himalayan Main Central Thrust in Nepal , 2008, Journal of the Geological Society.

[55]  B. N. Upreti,et al.  Crustal generation of the Himalayan leucogranites , 1987 .

[56]  N. Harris,et al.  Trace element modelling of pelite-derived granites , 1992 .

[57]  Dunyi Liu,et al.  Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure‐temperature‐deformation‐time constraints on orogenic models , 2010 .

[58]  L. Zeng,et al.  Early Miocene leucogranites in Dinggye area, southern Tibet: Formation mechanism and tectonic implications , 2011 .

[59]  K. Hou,et al.  Oligocene crustal anatexis in the Tethyan Himalaya, southern Tibet , 2016 .

[60]  Bo Zhang,et al.  Tectonics of the northern Himalaya since the India–Asia collision , 2012 .

[61]  B. Dutrow,et al.  Nomenclature of the tourmaline-supergroup minerals , 2011 .

[62]  F. Corfu,et al.  Zircon M257 ‐ a Homogeneous Natural Reference Material for the Ion Microprobe U‐Pb Analysis of Zircon , 2008 .

[63]  Zhenhan Wu,et al.  Normal faulting in central Tibet since at least 13.5 Myr ago , 2001, Nature.

[64]  Jin Zhen-min Studies on Rb-Sr and Sm-Nd Isotope of Yadong Leucogranite in Tibet: Constraint on Its Age and Source Material , 2001 .

[65]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[66]  Lei Guo,et al.  Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system , 2007 .

[67]  M. Murphy Isotopic characteristics of the Gurla Mandhata metamorphic core complex: Implications for the architecture of the Himalayan orogen , 2007 .

[68]  K. Hou,et al.  In situ LA–MC–ICP–MS boron isotope and zircon U–Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province, northeastern China , 2015 .

[69]  M. Palmer Boron isotope systematics of hydrothermal fluids and tourmalines: A synthesis , 1991 .

[70]  D. Rowley Age of initiation of collision between India and Asia: A review of stratigraphic data , 1996 .

[71]  B. Dutrow,et al.  Metamorphic tourmaline and its petrologic applications , 1996 .

[72]  R. Parrish,et al.  Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet , 2011 .