From Microscopic Theory to Macroscopic Theory: a Systematic Study on Modeling for Liquid Crystals

In this paper, we propose a systematic way of liquid crystal modeling to build connections between microscopic theory and macroscopic theory. In the first part, we propose a new Q-tensor model based on Onsager’s molecular theory for liquid crystals. The Oseen–Frank theory can be recovered from the derived Q-tensor theory by making a uniaxial assumption, and the coefficients in the Oseen–Frank model can be examined. In addition, the smectic-A phase can be characterized by the derived macroscopic model. In the second part, we derive a new dynamic Q-tensor model from Doi’s kinetic theory by the Bingham closure, which obeys the energy dissipation law. Moreover, the Ericksen–Leslie system can also be derived from new Q-tensor system by making an expansion near the local equilibrium.

[1]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[2]  Nigel J. Mottram,et al.  Introduction to Q-tensor theory , 2014, 1409.3542.

[3]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[4]  W. Maier,et al.  Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes , 1958 .

[5]  W. E,et al.  Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Apala Majumdar,et al.  Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory , 2008, European Journal of Applied Mathematics.

[7]  S. Brazovskii Phase transition of an isotropic system to a nonuniform state , 1975 .

[8]  J. Ball,et al.  Orientable and Non-Orientable Line Field Models for Uniaxial Nematic Liquid Crystals , 2008 .

[9]  L. Léger,et al.  Quasielastic Rayleigh Scattering in Nematic Liquid Crystals , 1969 .

[10]  Masao Doi,et al.  Constitutive Equation for Nematic Liquid Crystals under Weak Velocity Gradient Derived from a Molecular Kinetic Equation , 1983 .

[11]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[12]  W. L. Mcmillan,et al.  Simple Molecular Model for the Smectic A Phase of Liquid Crystals , 1971 .

[13]  Apala Majumdar,et al.  Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.

[14]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[15]  Sheng,et al.  Nematic-isotropic phase transition: An extended mean field theory. , 1993, Physical review letters.

[16]  Valeriy Slastikov,et al.  Critical points of the Onsager functional on a sphere , 2005 .

[17]  Amit Srivastava,et al.  Elastic constants of nematic liquid crystals of uniaxial symmetry , 2004 .

[18]  Qi Wang,et al.  A hydrodynamic theory for solutions of nonhomogeneous nematic liquid crystalline polymers of different configurations , 2002 .

[19]  A. Saupe,et al.  Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil l1. , 1959 .

[20]  T. Lubensky,et al.  Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions , 1976 .

[21]  Qi Wang Biaxial steady states and their stability in shear flows of liquid crystal polymers , 1997 .

[22]  R. Hornreich,et al.  Landau Theory of Blue Phases , 1988 .

[23]  E Weinan,et al.  A Molecular Kinetic Theory of Inhomogeneous Liquid Crystal Flow and the Small Deborah Number Limit , 2006 .

[24]  Pingwen Zhang,et al.  A kinetic–hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow , 2007 .

[25]  Conduct and Reporting of Clinical Research , 2005, Science.

[26]  P. Maffettone,et al.  Continuum theory for nematic liquid crystals with tensorial order , 2004 .

[27]  Apala Majumdar,et al.  Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory , 2010 .

[28]  P. Maffettone,et al.  A closure approximation for nematic liquid crystals based on the canonical distribution subspace theory , 2000 .

[29]  V. Fréedericksz,et al.  Forces causing the orientation of an anisotropic liquid , 1933 .

[30]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[31]  Patrick Ilg,et al.  Canonical distribution functions in polymer dynamics. (II). Liquid-crystalline polymers , 2003 .

[32]  Ping Sheng,et al.  Generalized hydrodynamic equations for nematic liquid crystals , 1998 .

[33]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[34]  O. Parodi,et al.  Stress tensor for a nematic liquid crystal , 1970 .

[35]  J. J. Fenga A theory for flowing nematic polymers with orientational distortion , 2009 .

[36]  C. Oseen,et al.  The theory of liquid crystals , 1933 .

[37]  Pingwen Zhang,et al.  Axial Symmetry and Classification of Stationary Solutions of Doi-Onsager Equation on the Sphere with Maier-Saupe Potential , 2005, 1909.13288.

[38]  Chun Liu,et al.  Existence of Solutions for the Ericksen-Leslie System , 2000 .

[39]  Molecular model for de Vries type smectic- A -smectic- C phase transition in liquid crystals. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  J. Prost,et al.  Determination of twist viscosity coefficient in the nematic mesophases , 1971 .

[41]  Francesco Greco,et al.  The Elastic Constants of Maier-Saupe Rodlike Molecule Nematics , 1991 .

[42]  G. Fredrickson The theory of polymer dynamics , 1996 .

[43]  Wei Wang,et al.  The Small Deborah Number Limit of the Doi‐Onsager Equation to the Ericksen‐Leslie Equation , 2012, 1206.5480.

[44]  Pingwen Zhang,et al.  From microscopic theory to macroscopic theory — symmetries and order parameters of rigid molecules , 2013, 1305.4726.

[45]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[46]  L. G. Leal,et al.  A closure approximation for liquid-crystalline polymer models based on parametric density estimation , 1998 .

[47]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[48]  Wei Wang,et al.  From microscopic theory to macroscopic theory: dynamics of the rod-like liquid crystal molecules , 2013, 1305.4721.

[49]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[50]  E. J. Hinch,et al.  Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations , 1976, Journal of Fluid Mechanics.

[51]  Charles L. Tucker,et al.  Orthotropic closure approximations for flow-induced fiber orientation , 1995 .

[52]  James J. Feng,et al.  Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid-crystalline polymers? , 1998 .

[53]  S. Lee,et al.  Computations of the phase equilibrium, elastic constants, and viscosities of a hard-rod nematic liquid crystal , 1986 .

[54]  Zhifei Zhang,et al.  Rigorous Derivation from Landau-de Gennes Theory to Ericksen-Leslie Theory , 2013, SIAM J. Math. Anal..

[55]  Masao Doi,et al.  Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases , 1981 .

[56]  Pingwen Zhang,et al.  A Nonhomogeneous Kinetic Model of Liquid Crystal Polymers and Its Thermodynamic Closure Approximation , 2009 .

[57]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[58]  D. Frenkel,et al.  Calculation of liquid-crystal Frank constants by computer simulation. , 1988, Physical review. A, General physics.