Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using the Ensemble Kalman Filter

Particle Markov chain Monte Carlo (pMCMC) is now a popular method for performing Bayesian statistical inference on challenging state space models (SSMs) with unknown static parameters. It uses a particle filter (PF) at each iteration of an MCMC algorithm to unbiasedly estimate the likelihood for a given static parameter value. However, pMCMC can be computationally intensive when a large number of particles in the PF is required, such as when the data is highly informative, the model is misspecified and/or the time series is long. In this paper we exploit the ensemble Kalman filter (EnKF) developed in the data assimilation literature to speed up pMCMC. We replace the unbiased PF likelihood with the biased EnKF likelihood estimate within MCMC to sample over the space of the static parameter. On a wide class of different non-linear SSM models, we demonstrate that our new ensemble MCMC (eMCMC) method can significantly reduce the computational cost whilst maintaining reasonable accuracy. We also propose several extensions of the vanilla eMCMC algorithm to further improve computational efficiency. Computer code to implement our methods on all the examples can be downloaded from this https URL.

[1]  G. Peters,et al.  Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC) , 2010, 1005.2238.

[2]  Nicolas Chopin,et al.  SMC2: an efficient algorithm for sequential analysis of state space models , 2011, 1101.1528.

[3]  Andrew M. Stuart,et al.  Importance Sampling: Computational Complexity and Intrinsic Dimension , 2015 .

[4]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[5]  Matti Vihola,et al.  Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance , 2017, 1706.09873.

[6]  David T. Frazier,et al.  Bayesian Synthetic Likelihood , 2017, 2305.05120.

[7]  James M. Flegal,et al.  Multivariate output analysis for Markov chain Monte Carlo , 2015, Biometrika.

[8]  Darren J Wilkinson,et al.  Bayesian inference for Markov jump processes with informative observations , 2014, Statistical applications in genetics and molecular biology.

[9]  A. Doucet,et al.  The correlated pseudomarginal method , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[10]  Jonathan R. Stroud,et al.  Understanding the Ensemble Kalman Filter , 2016 .

[11]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[12]  D. Liley,et al.  Modeling the effects of anesthesia on the electroencephalogram. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  David J. Nott,et al.  Variational Bayes With Intractable Likelihood , 2015, 1503.08621.

[14]  D. Wilkinson,et al.  Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.

[15]  Brian Jefferies Feynman-Kac Formulae , 1996 .

[16]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[17]  Paul Fearnhead,et al.  Particle Filters and Data Assimilation , 2017, 1709.04196.

[18]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[19]  Darren J. Wilkinson,et al.  Online state and parameter estimation in Dynamic Generalised Linear Models , 2016, 1608.08666.

[20]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[21]  A. Beskos,et al.  On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.

[22]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[23]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[24]  Ralph S. Silva,et al.  On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .

[25]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[26]  Robert Kohn,et al.  Auxiliary particle ltering within adaptive Metropolis-Hastings sampling , 2010, 1006.1914.

[27]  Jonathan R. Stroud,et al.  An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation , 2010 .

[28]  R. Kohn,et al.  Bayesian Inference for State Space Models using Block and Correlated Pseudo Marginal Methods , 2016, 1612.07072.

[29]  Peter Jan van Leeuwen,et al.  Nonlinear Data Assimilation , 2015 .

[30]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[31]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[32]  S. Lakshmivarahan,et al.  Ensemble Kalman filter , 2009, IEEE Control Systems.

[33]  Peter J. Bickel,et al.  Comparison of Ensemble Kalman Filters under Non-Gaussianity , 2010 .

[34]  Richard G. Everitt,et al.  A rare event approach to high-dimensional approximate Bayesian computation , 2016, Statistics and Computing.

[35]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[36]  I. Bojak,et al.  Fast approximate Bayesian inference for stable differential equation models , 2017, 1706.00689.

[37]  Ingram Olkin,et al.  Unbiased Estimation of Some Multivariate Probability Densities and Related Functions , 1969 .

[38]  J. Rosenthal,et al.  On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.

[39]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[40]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[41]  Christopher C. Drovandi,et al.  Improving the efficiency of fully Bayesian optimal design of experiments using randomised quasi-Monte Carlo , 2018 .

[42]  Johan Dahlin,et al.  Accelerating pseudo-marginal Metropolis-Hastings by correlating auxiliary variables , 2015, 1511.05483.

[43]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.

[44]  Christopher K. Wikle,et al.  Ensemble Kalman Methods for High-Dimensional Hierarchical Dynamic Space-Time Models , 2017, Journal of the American Statistical Association.

[45]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[46]  Alison Fowler The Ensemble Kalman filter , 2016 .

[47]  N. Chopin,et al.  Sequential Quasi-Monte Carlo , 2014, 1402.4039.

[48]  Seung-Jong Baek,et al.  Higher Resolution in an Operational Ensemble Kalman Filter , 2014 .

[49]  Andrew Golightly,et al.  Adaptive, Delayed-Acceptance MCMC for Targets With Expensive Likelihoods , 2015, 1509.00172.

[50]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[51]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[52]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[53]  Andrew Golightly,et al.  Delayed acceptance particle MCMC for exact inference in stochastic kinetic models , 2014, Stat. Comput..

[54]  Dan Cornford,et al.  Variational mean-field algorithm for efficient inference in large systems of stochastic differential equations. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[56]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.