A representation of digital hyperbolas y = 1/x alpha + beta

Abstract It is proved that digital hyperbola segments and their least squares hyperbola fits are in one-to-one correspondence. This enables a constant space representation of a digital hyperbola segment inscribed into the integer grid. Such a representation is ( x 1 , n , a , b ), where x 1 , is the x -coordinate of the left endpoint of the digital hyperbola segment, n is the number of its integer points,, while a and b are the coefficients of the least squares hyperbola fit Y = 1 x a + b of the given digital hyperbola segment. An O( n max { loh n , log x 1 }) algorithm for obtaining a digital hyperbola segment from its least squares hyperbola fit is described.

[1]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[2]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  Kinley Larntz,et al.  Applied Statistical Methods , 1974 .

[4]  Christian Ronse,et al.  A Bibliography on Digital and Computational Convexity (1961-1988) , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Peter Sauer,et al.  On the Recognition of Digital Circles in Linear Time , 1993, Comput. Geom..

[6]  Michael Werman,et al.  Fitting a Second Degree Curve in the Presence of Error , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jovisa Zunic,et al.  Representation of digital parabolas by least-square fit , 1995, Other Conferences.

[8]  W. Gander,et al.  Least-squares fitting of circles and ellipses , 1994 .

[9]  Arnold W. M. Smeulders,et al.  Discrete Representation of Straight Lines , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Michael Lindenbaum,et al.  A New Parameterization of Digital Straight Lines , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  S. H. Joseph Unbiased Least Squares Fitting of Circular Arcs , 1994, CVGIP Graph. Model. Image Process..

[12]  Bidyut Baran Chaudhuri,et al.  Optimum circular fit to weighted data in multi-dimensional space , 1993, Pattern Recognit. Lett..

[13]  Chul E. Kim,et al.  Digital Disks , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Azriel Rosenfeld,et al.  New views of linearity and connectedness in digital geometry , 1989, Pattern Recognit. Lett..

[15]  Ivan Stojmenovic,et al.  A new characterization of digital lines by least square fits , 1993, Pattern Recognit. Lett..

[16]  Jovisa D. Zunic,et al.  A coding scheme for certain sets of digital curves , 1995, Pattern Recognit. Lett..