Subdivision shell elements with anisotropic growth

SUMMARY A thin shell finite element approach based on Loop's subdivision surfaces is proposed, capable of dealing with large deformations and anisotropic growth. To this end, the Kirchhoff–Love theory of thin shells is derived and extended to allow for arbitrary in-plane growth. The simplicity and computational efficiency of the subdivision thin shell elements is outstanding, which is demonstrated on a few standard loading benchmarks. With this powerful tool at hand, we demonstrate the broad range of possible applications by numerical solution of several growth scenarios, ranging from the uniform growth of a sphere, to boundary instabilities induced by large anisotropic growth. Finally, it is shown that the problem of a slowly and uniformly growing sheet confined in a fixed hollow sphere is equivalent to the inverse process where a sheet of fixed size is slowly crumpled in a shrinking hollow sphere in the frictionless, quasistatic, elastic limit. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  J. B. Rosen The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints , 1960 .

[2]  R. Hayward,et al.  Designing Responsive Buckled Surfaces by Halftone Gel Lithography , 2012, Science.

[3]  Feng Feng,et al.  Finite element modeling of lipid bilayer membranes , 2006, J. Comput. Phys..

[4]  P. Schröder,et al.  The basis refinement method , 2003 .

[5]  G. Gompper,et al.  Forced crumpling of self-avoiding elastic sheets , 2006, Nature materials.

[6]  M. Marder,et al.  Theory of edges of leaves , 2003 .

[7]  G. Gompper,et al.  Compression, crumpling and collapse of spherical shells and capsules , 2011 .

[8]  Roy H. Stogner,et al.  C1 macroelements in adaptive finite element methods , 2007 .

[9]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[10]  M. Müller,et al.  Conical defects in growing sheets. , 2008, Physical review letters.

[11]  Michael P Marder,et al.  Crumpling, buckling, and cracking: Elasticity of thin sheets , 2007 .

[12]  H. Herrmann,et al.  Packing of elastic wires in spherical cavities. , 2011, Physical review letters.

[13]  K Kormi,et al.  Finite Element Simulation of Energy Absorption Devices under Axial Static Compressive and Impact Loading , 2000 .

[14]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[15]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[16]  Vlado A. Lubarda,et al.  On the mechanics of solids with a growing mass , 2002 .

[17]  Seth Green,et al.  Multilevel, subdivision-based, thin shell finite elements: development and an application to red blood cell modeling , 2003 .

[18]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[19]  K. Bathe,et al.  Fundamental considerations for the finite element analysis of shell structures , 1998 .

[20]  Luo Yunhua,et al.  Explanation and elimination of shear locking and membrane locking with field consistence approach , 1998 .

[21]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[22]  Michael Marder,et al.  Thin films: Wrinkling of an elastic sheet under tension , 2002, Nature.

[23]  A. Goriely,et al.  Anticavitation and Differential Growth in Elastic Shells , 2011 .

[24]  George Turkiyyah,et al.  Second‐order accurate constraint formulation for subdivision finite element simulation of thin shells , 2004 .

[25]  A. Otubushin,et al.  Detailed validation of a non-linear finite element code using dynamic axial crushing of a square tube , 1998 .

[26]  J. Timonen,et al.  The effect of plasticity in crumpling of thin sheets. , 2009, Nature materials.

[27]  D. Blair,et al.  Geometry of crumpled paper. , 2004, Physical review letters.

[28]  Anne Hoger,et al.  On the determination of residual stress in an elastic body , 1986 .

[29]  R. Kupferman,et al.  Elastic theory of unconstrained non-Euclidean plates , 2008, 0810.2411.

[30]  Nils-Erik Wiberg,et al.  A Posteriori Local Error Estimation and Adaptive Time-stepping for Newmark Integration in Dynamic Analysis , 1992 .

[31]  K. Wiśniewski,et al.  Finite Rotation Shells , 2010 .

[32]  H. Herrmann,et al.  Fragmentation of shells. , 2004, Physical review letters.

[33]  D. Morse,et al.  Scaling Properties of Stretching Ridges in a Crumpled Elastic Sheet , 1995, Science.

[34]  Jos Stam,et al.  Evaluation of Loop Subdivision Surfaces , 2010 .

[35]  Albert Edward Green,et al.  Finite elastic deformation of incompressible isotropic bodies , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[37]  Michael Ortiz,et al.  A cohesive approach to thin-shell fracture and fragmentation , 2005 .

[38]  Eitan Grinspun Fehmi Cirak Peter Schröder Michael Ortiz Caltech Non-Linear Mechanics and Collisions for Subdivision Surfaces , 1999 .

[39]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[40]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[41]  A. Needleman Inflation of spherical rubber balloons , 1977 .

[42]  Stress Condensation in Crushed Elastic Manifolds , 1996, cond-mat/9609037.

[43]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[44]  Alexander G Iosilevich,et al.  An evaluation of the MITC shell elements , 2000 .

[45]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[46]  R. Hayward,et al.  Thermally responsive rolling of thin gel strips with discrete variations in swelling , 2012 .

[47]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[48]  Fehmi Cirak,et al.  Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .

[49]  Davide Carlo Ambrosi,et al.  Stress-Modulated Growth , 2007 .

[50]  P. G. Ciarlet Un modèle bi-dimensionnel non linéaire de coque analogue à celui de W.T. Koiter , 2000 .

[51]  Carlo Sansour,et al.  An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation , 1992 .

[52]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[53]  Lin Ma,et al.  Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics , 2007, J. Comput. Phys..

[54]  Jean Schweitzer,et al.  Analysis and application of subdivision surfaces , 1996 .

[55]  E. Sharon,et al.  Shaping of Elastic Sheets by Prescription of Non-Euclidean Metrics , 2007, Science.

[56]  Osman Kahraman,et al.  Fluid membrane vesicles in confinement , 2012 .

[57]  H. Herrmann,et al.  Self-contact and instabilities in the anisotropic growth of elastic membranes. , 2010, Physical review letters.

[58]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[59]  Peter Wriggers,et al.  Theory and numerics of thin elastic shells with finite rotations , 1989 .

[60]  Antonio DiCarlo,et al.  Growth and balance , 2002 .

[61]  Hans Jürgen Herrmann,et al.  Finite Element simulation of dense wire packings , 2011, 1111.5128.

[62]  Petr Krysl,et al.  Object‐oriented hierarchical mesh refinement with CHARMS , 2004 .

[63]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[64]  B. Audoly,et al.  Self-similar structures near boundaries in strained systems. , 2003, Physical review letters.

[65]  Y. Pomeau,et al.  Crumpled paper , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[66]  B. Brank,et al.  On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells , 1995 .

[67]  The Shape of the Edge of a Leaf , 2002, cond-mat/0208232.

[68]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[69]  Nam-Ho Kim Introduction to Nonlinear Finite Element Analysis , 2014 .

[70]  Osman Kahraman,et al.  Morphogenesis of membrane invaginations in spherical confinement , 2012, 1201.2518.

[71]  A. McCulloch,et al.  Stress-dependent finite growth in soft elastic tissues. , 1994, Journal of biomechanics.

[72]  Paulo Henriques Iscold Andrade de Oliveira,et al.  A Review of Finite Element Simulation of Aircraft Crashworthiness , 2005 .

[73]  M. Ben Amar,et al.  Morphogenesis of growing soft tissues. , 2007, Physical review letters.

[74]  A. Love I. The small free vibrations and deformation of a thin elastic shell , 1888, Proceedings of the Royal Society of London.

[75]  R K Jain,et al.  Compatibility and the genesis of residual stress by volumetric growth , 1996, Journal of mathematical biology.

[76]  H. Parisch A continuum‐based shell theory for non‐linear applications , 1995 .

[77]  A. G. Mamalis,et al.  Finite element simulation of the axial collapse of thin-wall square frusta , 2000 .

[78]  L. Taber Biomechanics of Growth, Remodeling, and Morphogenesis , 1995 .

[79]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[80]  F H Hsu,et al.  The influences of mechanical loads on the form of a growing elastic body. , 1968, Journal of biomechanics.

[81]  J. Reddy An introduction to nonlinear finite element analysis , 2004 .

[82]  J. B. Rosen The gradient projection method for nonlinear programming: Part II , 1961 .

[83]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[84]  K. Wiśniewski Finite Rotation Shells: Basic Equations and Finite Elements for Reissner Kinematics , 2010 .

[85]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[86]  A. Azizinamini,et al.  Geometrically Exact Nonlinear Extended-Reissner/Mindlin Shells: Fundamentals, Finite Element Formulation, Elasticity , 2009 .

[87]  Dominique Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals - Second Edition , 2011 .