Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data

Classification and spatial methods can be used in conjunction to represent the individual information of similar preferences by means of groups. In the context of latent class models and using Simulated Annealing, the cluster-unfolding model for two-way two-mode preference rating data has been shown to be superior to a two-step approach of first deriving the clusters and then unfolding the classes. However, the high computational cost makes the procedure only suitable for small or medium-sized data sets, and the hypothesis of independent and normally distributed preference data may also be too restrictive in many practical situations. Therefore, an alternating least squares procedure is proposed, in which the individuals and the objects are partitioned into clusters, while at the same time the cluster centers are represented by unfolding. An enhanced Simulated Annealing algorithm in the least squares framework is also proposed in order to address the local optimum problem. Real and artificial data sets are analyzed to illustrate the performance of the model.

[1]  W. DeSarbo,et al.  Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups , 1991 .

[2]  Willem J. Heiser,et al.  Computational Statistics and Data Analysis a Dual Latent Class Unfolding Model for Two-way Two-mode Preference Rating Data , 2022 .

[3]  C. Coombs A theory of data. , 1965, Psychology Review.

[4]  W. DeSarbo,et al.  Multiclus: A new method for simultaneously performing multidimensional scaling and cluster analysis , 1991 .

[5]  J. Vera,et al.  A latent class MDS model with spatial constraints for non-stationary spatial covariance estimation , 2009 .

[6]  Brian Everitt,et al.  Cluster analysis , 1974 .

[7]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[8]  The unfolding technique. , 1952 .

[9]  Willem J. Heiser,et al.  Global Optimization in Any Minkowski Metric: A Permutation-Translation Simulated Annealing Algorithm for Multidimensional Scaling , 2007, J. Classif..

[10]  Rabikar Chatterjee,et al.  Analyzing Constant-Sum Multiple Criterion Data: A Segment-level Approach , 1995 .

[11]  David H. Krantz,et al.  Rational distance functions for multidimensional scaling , 1967 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  Michel Wedel,et al.  An Exponential-Family Multidimensional Scaling Mixture Methodology , 1996 .

[14]  P. Groenen,et al.  Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation , 2005 .

[15]  Kathleen Marchal,et al.  Joint mapping of genes and conditions via multidimensional unfolding analysis , 2007, BMC Bioinformatics.

[16]  W. Heiser Joint Ordination of Species and Sites: The Unfolding Technique , 1987 .

[17]  J. Vera,et al.  Non-stationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints , 2008 .

[18]  Pradeep K. Chintagunta,et al.  Heterogeneous Logit Model Implications for Brand Positioning , 1994 .

[19]  P. Schönemann,et al.  A Conjugate Gradient Algorithm for the Multidimensional Analysis of Preference Data. , 1975, Multivariate behavioral research.

[20]  Hans-Hermann Bock,et al.  Two-mode clustering methods: astructuredoverview , 2004, Statistical methods in medical research.

[21]  F. M. Busing,et al.  Avoiding degeneracy in metric unfolding by penalizing the intercept. , 2006, The British journal of mathematical and statistical psychology.

[22]  H. Kiers,et al.  Factorial k-means analysis for two-way data , 2001 .

[23]  H. Kiers,et al.  Simultaneous classification and multidimensional scaling with external information , 2005 .

[24]  W. DeSarbo,et al.  A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research , 1997 .

[25]  W. Heiser,et al.  A latent class unfolding model for analyzing single stimulus preference ratings , 1993 .

[26]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[27]  J. Carroll,et al.  K-means clustering in a low-dimensional Euclidean space , 1994 .

[28]  Willem J. Heiser,et al.  A Permutation-Translation Simulated Annealing Algorithm for L1 and L2 Unidimensional Scaling , 2005, J. Classif..

[29]  Maurizio Vichi,et al.  Two-mode multi-partitioning , 2008, Comput. Stat. Data Anal..

[30]  R. Duncan Luce,et al.  A choice theory analysis of similarity judgments , 1961 .

[31]  Suzanne Winsberg,et al.  A latent class vector model for preference ratings , 1993 .

[32]  Wayne S. DeSarbo,et al.  Latent Class Multidimensional Scaling. A Review of Recent Developments in the Marketing and Psychometric Literature , 1994 .

[33]  W. Heiser,et al.  Clusteringn objects intok groups under optimal scaling of variables , 1989 .

[34]  Willem J. Heiser,et al.  Clustering in Low-Dimensional Space , 1993 .

[35]  Ulf Böckenholt,et al.  Constrained latent class analysis: Simultaneous classification and scaling of discrete choice data , 1991 .

[36]  Patrick J. F. Groenen,et al.  Optimization Strategies for Two-Mode Partitioning , 2009, J. Classif..

[37]  Catherine A. Sugar,et al.  Finding the Number of Clusters in a Dataset , 2003 .

[38]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[39]  José A. Díaz-García,et al.  A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation , 2008, Computational Statistics & Data Analysis.

[40]  W. Heiser A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative , 1991 .

[41]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[42]  Willem J. Heiser,et al.  A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data , 2009 .

[43]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[44]  P. Groenen,et al.  Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima , 1997 .