Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data
暂无分享,去创建一个
[1] W. DeSarbo,et al. Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups , 1991 .
[2] Willem J. Heiser,et al. Computational Statistics and Data Analysis a Dual Latent Class Unfolding Model for Two-way Two-mode Preference Rating Data , 2022 .
[3] C. Coombs. A theory of data. , 1965, Psychology Review.
[4] W. DeSarbo,et al. Multiclus: A new method for simultaneously performing multidimensional scaling and cluster analysis , 1991 .
[5] J. Vera,et al. A latent class MDS model with spatial constraints for non-stationary spatial covariance estimation , 2009 .
[6] Brian Everitt,et al. Cluster analysis , 1974 .
[7] P. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 1999 .
[8] The unfolding technique. , 1952 .
[9] Willem J. Heiser,et al. Global Optimization in Any Minkowski Metric: A Permutation-Translation Simulated Annealing Algorithm for Multidimensional Scaling , 2007, J. Classif..
[10] Rabikar Chatterjee,et al. Analyzing Constant-Sum Multiple Criterion Data: A Segment-level Approach , 1995 .
[11] David H. Krantz,et al. Rational distance functions for multidimensional scaling , 1967 .
[12] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[13] Michel Wedel,et al. An Exponential-Family Multidimensional Scaling Mixture Methodology , 1996 .
[14] P. Groenen,et al. Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation , 2005 .
[15] Kathleen Marchal,et al. Joint mapping of genes and conditions via multidimensional unfolding analysis , 2007, BMC Bioinformatics.
[16] W. Heiser. Joint Ordination of Species and Sites: The Unfolding Technique , 1987 .
[17] J. Vera,et al. Non-stationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints , 2008 .
[18] Pradeep K. Chintagunta,et al. Heterogeneous Logit Model Implications for Brand Positioning , 1994 .
[19] P. Schönemann,et al. A Conjugate Gradient Algorithm for the Multidimensional Analysis of Preference Data. , 1975, Multivariate behavioral research.
[20] Hans-Hermann Bock,et al. Two-mode clustering methods: astructuredoverview , 2004, Statistical methods in medical research.
[21] F. M. Busing,et al. Avoiding degeneracy in metric unfolding by penalizing the intercept. , 2006, The British journal of mathematical and statistical psychology.
[22] H. Kiers,et al. Factorial k-means analysis for two-way data , 2001 .
[23] H. Kiers,et al. Simultaneous classification and multidimensional scaling with external information , 2005 .
[24] W. DeSarbo,et al. A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research , 1997 .
[25] W. Heiser,et al. A latent class unfolding model for analyzing single stimulus preference ratings , 1993 .
[26] T. Caliński,et al. A dendrite method for cluster analysis , 1974 .
[27] J. Carroll,et al. K-means clustering in a low-dimensional Euclidean space , 1994 .
[28] Willem J. Heiser,et al. A Permutation-Translation Simulated Annealing Algorithm for L1 and L2 Unidimensional Scaling , 2005, J. Classif..
[29] Maurizio Vichi,et al. Two-mode multi-partitioning , 2008, Comput. Stat. Data Anal..
[30] R. Duncan Luce,et al. A choice theory analysis of similarity judgments , 1961 .
[31] Suzanne Winsberg,et al. A latent class vector model for preference ratings , 1993 .
[32] Wayne S. DeSarbo,et al. Latent Class Multidimensional Scaling. A Review of Recent Developments in the Marketing and Psychometric Literature , 1994 .
[33] W. Heiser,et al. Clusteringn objects intok groups under optimal scaling of variables , 1989 .
[34] Willem J. Heiser,et al. Clustering in Low-Dimensional Space , 1993 .
[35] Ulf Böckenholt,et al. Constrained latent class analysis: Simultaneous classification and scaling of discrete choice data , 1991 .
[36] Patrick J. F. Groenen,et al. Optimization Strategies for Two-Mode Partitioning , 2009, J. Classif..
[37] Catherine A. Sugar,et al. Finding the Number of Clusters in a Dataset , 2003 .
[38] Patrick J. F. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 2003 .
[39] José A. Díaz-García,et al. A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation , 2008, Computational Statistics & Data Analysis.
[40] W. Heiser. A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative , 1991 .
[41] Gerhard Winkler,et al. Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.
[42] Willem J. Heiser,et al. A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data , 2009 .
[43] G. W. Milligan,et al. An examination of procedures for determining the number of clusters in a data set , 1985 .
[44] P. Groenen,et al. Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima , 1997 .