Simulation of multi-axial compaction of granular media from loose to high relative densities

[1]  R. Hill The mathematical theory of plasticity , 1950 .

[2]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[3]  A. E. Skinner A Note on the Influence of Interparticle Friction on the Shearing Strength of a Random Assembly of Spherical Particles , 1969 .

[4]  M. Oda Deformation Mechanism of Sand in Triaxial Compression Tests , 1972 .

[5]  R. J. Green,et al.  A plasticity theory for porous solids , 1972 .

[6]  W. M. McCabe,et al.  Combined stress-state (triaxial) compaction for improved green properties. , 1973 .

[7]  Susumu Shima,et al.  Plasticity theory for porous metals , 1976 .

[8]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[9]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[10]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[11]  E. Arzt The influence of an increasing particle coordination on the densification of spherical powders , 1982 .

[12]  Masanobu Oda,et al.  Experimental micromechanical evaluation of strength of granular materials: Effects of particle rolling , 1982 .

[13]  M. Ashby,et al.  Hot isostatic pressing diagrams : new developments , 1985 .

[14]  N. Aravas On the numerical integration of a class of pressure-dependent plasticity models , 1987 .

[15]  P. Dawson,et al.  An anisotropic continuum model for the sintering and compaction of powder packings , 1988 .

[16]  Masao Satake,et al.  Mechanics of Granular Materials , 1989 .

[17]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[18]  B. Lubachevsky,et al.  Geometric properties of random disk packings , 1990 .

[19]  K. Z. Y. Yen,et al.  A dynamic simulation of particle rearrangement in powder packings with realistic interactions , 1992 .

[20]  Norman A. Fleck,et al.  Yielding of metal powder bonded by isolated contacts , 1992 .

[21]  Katalin Bagi,et al.  A quasi-static numerical model for micro-level analysis of granular assemblies , 1993 .

[22]  David J. Benson,et al.  An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder , 1994 .

[23]  A. Cocks,et al.  Stage I compaction of cylindrical particles under non-hydrostatic loading , 1995 .

[24]  N. Fleck,et al.  COMPACTION OF AN ARRAY OF SPHERICAL-PARTICLES , 1995 .

[25]  A. Jagota,et al.  Viscosities and Sintering Rates of Composite Packings of Spheres , 1995 .

[26]  Norman A. Fleck,et al.  On the cold compaction of powders , 1995 .

[27]  S. Biwa,et al.  Analysis of cold and hot isostatic compaction of spherical particles , 1996 .

[28]  M. Tzaferopoulos On a quasi-static discrete element model of granular materials , 1996 .

[29]  Brian J. Briscoe,et al.  The internal form of compacted ceramic components: a comparison of a finite element modelling with experiment , 1996 .

[30]  Norman A. Fleck,et al.  The yield behaviour of metal powders , 1997 .

[31]  Per-Lennart Larsson,et al.  Similarity analysis of inelastic contact , 1997 .

[32]  C. S. Chang,et al.  Mechanics of deformation and flow of particulate materials : proceedings of a symposium, Evanston, Illinois, June 29-July 2, 1997 , 1997 .

[33]  John R. Williams,et al.  Granular Vortices and Shear Band Formation , 1997 .

[34]  L. Oger,et al.  Yield and deformation of an assembly of disks subjected to a deviatoric stress loading , 1998 .

[35]  Randall M. German,et al.  Powder metal technologies and applications , 1998 .

[36]  Twinning deformation in martensite microstructure , 1999 .

[37]  Norman A. Fleck,et al.  The viscoplastic compaction of composite powders , 1999 .

[38]  E. Olevsky,et al.  Shock consolidation: Microstructurally-based analysis and computational modeling , 1999 .

[39]  P. Dorémus,et al.  Axisymmetric part compaction : Data base for numerical simulation , 1999 .

[40]  Hans-Åke Häggblad,et al.  Comparison of computer models representing powder compaction process: State of the art review , 1999 .

[41]  Norman A. Fleck,et al.  Frictionless indentation of dissimilar elastic-plastic spheres , 2000 .

[42]  Jan D. Miller,et al.  Pore structure and network analysis of filter cake , 2000 .

[43]  O. Coube,et al.  Numerical simulation of metal powder die compaction with special consideration of cracking , 2000 .

[44]  R. Jullien,et al.  Computer simulations of steepest descent ballistic deposition , 2000 .

[45]  Norman A. Fleck,et al.  YIELD BEHAVIOUR OF COLD COMPACTED COMPOSITE POWDERS , 2000 .

[46]  Masanobu Oda,et al.  Study on couple stress and shear band development in granular media based on numerical simulation analyses , 2000 .

[47]  Colin Thornton,et al.  Quasi-static shear deformation of a soft particle system , 2000 .

[48]  Hongyuan Liu,et al.  Numerical investigation of particle breakage as applied to mechanical crushing Part I: Single-particle breakage , 2001 .

[49]  Norman A. Fleck,et al.  THE COMPACTION OF A RANDOM DISTRIBUTION OF METAL CYLINDERS BY THE DISCRETE ELEMENT METHOD , 2001 .

[50]  Antonios Zavaliangos,et al.  Recent developments in computer modeling of powder metallurgy processes , 2001 .

[51]  Rajesh Ransing,et al.  Numerical comparison of a deformable discrete element model and an equivalent continuum analysis for the compaction of ductile porous material , 2001 .

[52]  Paul R. Heyliger,et al.  Cold plastic compaction of powders by a network model , 2001 .

[53]  Pedro Ponte Castañeda Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II—applications , 2002 .

[54]  Antonios Zavaliangos,et al.  A Multiparticle Simulation of Powder Compaction Using Finite Element Discretization of Individual Particles , 2002 .

[55]  Augustin Gakwaya,et al.  Modeling of the metal powder compaction process using the cap model. Part II: Numerical implementation and practical applications , 2002 .

[56]  Pedro Ponte Castañeda Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory , 2002 .

[57]  Augustin Gakwaya,et al.  Modeling of the metal powder compaction process using the cap model. Part I. Experimental material characterization and validation , 2002 .

[58]  Antonios Zavaliangos,et al.  A Numerical Study of the Development of Tensile Principal Stresses During Die Compaction , 2003 .

[59]  R. H. Wagoner,et al.  Investigation of yield surface of monolithic and composite powders by explicit finite element simulation , 2003 .

[60]  I. C. Sinka,et al.  The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker–Prager Cap model , 2003 .

[61]  Gary S Grest,et al.  Confined granular packings: structure, stress, and forces. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Christophe L. Martin,et al.  Study of particle rearrangement during powder compaction by the Discrete Element Method , 2003 .

[63]  John J. Lannutti,et al.  Localized Densification during the Compaction of Alumina Granules: The Stage I—II Transition , 2004 .

[64]  I. C. Sinka,et al.  Analysis of tablet compaction. II. Finite element analysis of density distributions in convex tablets. , 2004, Journal of pharmaceutical sciences.

[65]  F. Stillinger,et al.  Jamming in hard sphere and disk packings , 2004 .