Quantum graph walks II: Quantum walks on graph coverings

We give a new determinant expression for the characteristic polynomial of the bond scattering matrix of a quantum graph G. Also, we give a decomposition formula for the characteristic polynomial of the bond scattering matrix of a regular covering of G. Furthermore, we define an L-function of G, and give a determinant expression of it. As a corollary, we express the characteristic polynomial of the bond scattering matrix of a regular covering of G by means of its L-functions. As an application, we introduce three types of quantum graph walks, and treat their relation.

[1]  Y. Ihara On discrete subgroups of the two by two projective linear group over p-adic fields , 1966 .

[2]  Uzy Smilansky,et al.  Periodic Orbit Theory and Spectral Statistics for Quantum Graphs , 1998, chao-dyn/9812005.

[3]  Kenji Fukumizu,et al.  Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation , 2009, NIPS.

[4]  H. Bass THE IHARA-SELBERG ZETA FUNCTION OF A TREE LATTICE , 1992 .

[5]  Stanley Gudder,et al.  Realistic quantum probability , 1988 .

[6]  John Watrous Quantum Simulations of Classical Random Walks and Undirected Graph Connectivity , 2001, J. Comput. Syst. Sci..

[7]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[8]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[9]  J. M. Harrison,et al.  Quantum graphs where back-scattering is prohibited , 2007, 0708.0839.

[10]  P. Kuchment Quantum graphs , 2004 .

[11]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[12]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[13]  Uzy Smilansky,et al.  Quantum chaos on discrete graphs , 2007, 0704.3525.

[14]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[15]  S. A. Amitsur On the characteristic polynomial of a sum of matrices , 1980 .

[16]  Simone Severini,et al.  Regular quantum graphs , 2004 .

[17]  Edwin R. Hancock,et al.  Quantum walks, Ihara zeta functions and cospectrality in regular graphs , 2011, Quantum Inf. Process..

[18]  P. Kuchment Quantum graphs: I. Some basic structures , 2004 .

[19]  Iwao Sato,et al.  Quantum graph walks I: mapping to quantum walks , 2012, 1211.0803.

[20]  Jean-Pierre Roth,et al.  Le spectre du Laplacien sur un graphe , 1984 .

[21]  Iwao Sato,et al.  On the relation between quantum walks and zeta functions , 2011, Quantum Inf. Process..

[22]  D. Zeilberger,et al.  A Combinatorial Proof of Bass’s Evaluations of the Ihara-Selberg Zeta Function for Graphs , 1998, math/9806037.

[23]  Jean Desbois Spectral determinant on graphs with generalized boundary conditions , 2001 .

[24]  H. M. Stark,et al.  Zeta Functions of Finite Graphs and Coverings , Part II , 2000 .

[25]  K. Hashimoto Zeta functions of finite graphs and representations of p-adic groups , 1989 .

[26]  T. Sunada,et al.  Zeta Functions of Finite Graphs , 2000 .

[27]  A. Terras,et al.  Zeta Functions of Finite Graphs and Coverings , 1996 .

[28]  U. Smilansky,et al.  Quantum graphs: Applications to quantum chaos and universal spectral statistics , 2006, nlin/0605028.

[29]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[30]  Aharonov,et al.  Quantum Walks , 2012, 1207.7283.

[31]  Toshikazu Sunada,et al.  Fundamental groups and Laplacians , 1988 .

[32]  T. Sunada L-functions in geometry and some applications , 1986 .

[33]  Jean Desbois,et al.  TOPICAL REVIEW: Functionals of Brownian motion, localization and metric graphs , 2005 .

[34]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[35]  Iwao Sato,et al.  Zeta Functions of Graph Coverings , 2000, J. Comb. Theory, Ser. B.

[36]  W. Marsden I and J , 2012 .

[37]  Simone Severini,et al.  A Matrix Representation of Graphs and its Spectrum as a Graph Invariant , 2006, Electron. J. Comb..

[38]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[39]  Gregor Tanner,et al.  From quantum graphs to quantum random walks , 2006 .

[40]  Petr Šeba,et al.  Free quantum motion on a branching graph , 1989 .

[41]  J. Harrison,et al.  Zeta functions of quantum graphs , 2009, 0911.2509.