Positron Scattering from Hydrogen Atom in Non-ideal Classical Plasmas
暂无分享,去创建一个
[1] V. Prasad,et al. Multipole polarizabilities and dipole oscillator strengths of H-atom in nonideal classical plasmas , 2022, The European Physical Journal Plus.
[2] Biswajit Das,et al. Photodetachment of H− in non-ideal classical plasmas , 2021, Physics of Plasmas.
[3] A. Ghoshal,et al. Dynamics of Positron Scattering from Lithium, Sodium and Potassium Atoms in Quantum Plasmas , 2021, Few-Body Systems.
[4] E. Pian,et al. Understanding the origin of the positron annihilation line and the physics of supernova explosions , 2021, Experimental Astronomy.
[5] Biswajit Das,et al. Stability of the helium atom embedded in classical nonideal plasmas , 2021 .
[6] A. Ghoshal,et al. Dynamics of positron scattering from lithium, sodium and potassium atoms in hot and dense plasmas , 2021 .
[7] Biswajit Das,et al. Scattering of slow electron from hydrogen atom in non-ideal classical plasmas: Zero-energy resonances , 2021 .
[8] A. Ghoshal,et al. Electron transfer in proton‐hydrogen collisions in nonideal classical plasmas , 2020, Contributions to Plasma Physics.
[9] Biswajit Das,et al. Properties of the Positronium Negative Ion Embedded in Non-ideal Classical Plasmas , 2020 .
[10] A. Ghoshal,et al. Scattering in non-ideal classical plasmas: Scattering length and zero-energy resonances , 2019 .
[11] Y. K. Ho,et al. S-wave resonances below the Ps($$n=2$$) threshold in positronic sodium interacting with screened Coulomb potentials , 2019, Indian Journal of Physics.
[12] Biswajit Das,et al. Stability of hydrogen atom in non-ideal classical plasmas , 2019, Physics of Plasmas.
[13] Y. K. Ho,et al. S-Wave Resonances Below the Ps($$\hbox {n}\displaystyle = 2$$n=2) Excitation Threshold of the Positron–Helium System Embedded in Dense Quantum Plasma , 2017 .
[14] Y. K. Ho,et al. Resonances below the Ps ( n = 2 ) excitation threshold of the e + − He ( 1 s 2 s 3 S e ) system interacting with screened potentials , 2017 .
[15] Pramit Rej,et al. Positron scattering from hydrogen atom in dense quantum plasmas: Positronium formation in Rydberg states , 2017 .
[16] Y. K. Ho,et al. S-wave resonances below the Ps(n = 2) excitation threshold of the e+ − He system embedded in Debye plasma , 2016 .
[17] A. Kadyrov,et al. Recent progress in the description of positron scattering from atoms using the convergent close-coupling theory , 2016, 1609.04082.
[18] Jian Guo Wang,et al. A review of quantum collision dynamics in Debye plasmas , 2016, 1606.00163.
[19] Pramit Rej,et al. Excited-state positronium formation in positron–hydrogen collisions under weakly coupled plasmas , 2016 .
[20] M. Pandey,et al. Positronium formation in collisions between positrons and alkali-metal atoms (Li, Na, K, Rb and Cs) in Debye plasma environments , 2016 .
[21] Zishi Jiang,et al. Resonances in positron-hydrogen scattering in dense quantum plasmas , 2015 .
[22] L. Chiari,et al. Recent positron-atom cross section measurements and calculations , 2014 .
[23] N. Guessoum. Positron astrophysics and areas of relation to low-energy positron physics , 2014 .
[24] Y. K. Ho,et al. An investigation of resonances in e+-H scattering embedded in Debye plasma , 2014 .
[25] K. Ratnavelu,et al. Positron scattering from hydrogen atom embedded in weakly coupled plasma , 2013 .
[26] P. Mandal,et al. Positronium formation in positron-helium collisions with a screened Coulomb interaction , 2012 .
[27] A. Becker,et al. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT , 2012, The Astrophysical Journal Supplement Series.
[28] Y. Zhou,et al. Positronium formation in positron-hydrogen collisions with Debye potentials , 2012 .
[29] J. Chalupský,et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser , 2012, Nature.
[30] H. Totsuji. Conduction of Strongly Coupled Electrons Through Narrow Channels on Liquid Helium Surface: Simulation , 2012 .
[31] P. Mandal,et al. Positronium formation in Debye plasma , 2011 .
[32] J. Fortney,et al. The Interior Structure, Composition, and Evolution of Giant Planets , 2009, 0912.0533.
[33] Y. K. Ho,et al. Positron scattering from hydrogen atom embedded in weakly-coupled plasmas , 2009 .
[34] S. J. Ward. Recent development in the theory of positron‐hydrogen collisions , 2008 .
[35] R. J. Drachman. Why positron physics is fun , 2008 .
[36] M. Pospelov,et al. The galactic 511 keV line from electroweak scale WIMPs , 2007, hep-ph/0703128.
[37] J. Truran,et al. Sedimentation and Type I X-Ray Bursts at Low Accretion Rates , 2006, astro-ph/0609583.
[38] P. Jean,et al. The lives and deaths of positrons in the interstellar medium , 2005, astro-ph/0504186.
[39] M. Pospelov,et al. Unstable relics as a source of galactic positrons , 2004, hep-ph/0402178.
[40] L. Bildsten,et al. Variability in the Thermal Emission from Accreting Neutron Star Transients , 2002, astro-ph/0204102.
[41] L. Bildsten,et al. Gravitational Settling of 22Ne in Liquid White Dwarf Interiors , 2001, astro-ph/0101365.
[42] Young-Dae Jung. Electron captures by positrons from hydrogenic ions in nonideal classical plasmas , 2000 .
[43] E. Brown. Nuclear Heating and Melted Layers in the Inner Crust of an Accreting Neutron Star , 1999, astro-ph/9910215.
[44] Young-Dae Jung. Dynamic plasma screening effects on semiclassical inelastic electron–ion collisions in dense plasmas , 1997 .
[45] W. Kauppila,et al. Measurements of total and (or) positronium-formation cross sections for positrons scattered by alkali, magnesium, and hydrogen atoms , 1996 .
[46] D. J. Robinson,et al. Positron scattering by atomic hydrogen , 1996 .
[47] G. Staszewska,et al. Positron-atomic-hydrogen elastic scattering: continued-fraction approach to a second-order optical model , 1986 .
[48] N. Sil,et al. Positron-atom and positron-molecule collisions , 1982 .
[49] 一丸 節夫,et al. Basic principles of plasma physics : a statistical approach , 1973 .