Response surface predictions of the viscoelastic properties of vapor‐grown carbon nanofiber/vinyl ester nanocomposites

A full factorial design of experiments and response surface methodology were used to investigate the effects of formula- tion, processing, and operating temperature on the viscoelastic properties of vapor-grown carbon nanofiber (VGCNF)/vinyl ester (VE) nanocomposites. Factors included VGCNF type (pristine, oxidized), use of a dispersing agent (DA) (no, yes), mixing method (ultrasonication, high-shear mixing, and a combination of both), VGCNF weight fraction (0.00, 0.25, 0.50, 0.75, and 1.00 parts per hundred parts resin (phr)), and temperature (30, 60, 90, and 120 � C). Response surface models (RSMs) for predicting storage and loss moduli were developed, which explicitly account for the effect of complex interactions between nanocomposite design factors and operating temperature on resultant composite properties; such influences would be impossible to assess using traditional single- factor experiments. Nanocomposite storage moduli were maximized over the entire temperature range (� 20% increase over neat VE) by using high-shear mixing and oxidized VGCNFs with DA or equivalently by employing pristine VGCNFs without DA at � 0.40 phr of VGCNFs. Ultrasonication yielded the highest loss modulus at � 0.25 phr of VGCNFs. The RSMs developed in this investigation may be used to design VGCNF-enhanced VE matrices with optimal storage and loss moduli for automotive structural applications. Moreover, a similar approach may be used to tailor the mechanical, thermal, and electrical properties of nanomaterials over a range of anticipated operating environments. V C 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 234-247, 2013

[1]  Roger L. King,et al.  Data mining and knowledge discovery in materials science and engineering: A polymer nanocomposites case study , 2013, Adv. Eng. Informatics.

[2]  Thomas E. Lacy,et al.  Statistical characterization of the impact strengths of vapor‐grown carbon nanofiber/vinyl ester nanocomposites using a central composite design , 2013 .

[3]  Thomas E. Lacy,et al.  Dynamic mechanical analysis and optimization of vapor-grown carbon nanofiber/vinyl ester nanocomposites using design of experiments , 2011 .

[4]  Boreddy Reddy Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications , 2011 .

[5]  S. Nouranian,et al.  Vapor-grown carbon nanofiber/vinyl ester nanocomposites: Designed experimental study of mechanical properties and molecular dynamics simulations , 2011 .

[6]  Mark F. Horstemeyer,et al.  On dislocation-based artificial neural network modeling of flow stress , 2010 .

[7]  Rinze Benedictus,et al.  Thermal, morphological, and mechanical characterization of novel carbon nanofiber‐filled bismaleimide composites , 2010 .

[8]  Mohammed H Al-Saleh,et al.  Processing-microstructure-property relationship in conductive polymer nanocomposites , 2010 .

[9]  Kazem Majdzadeh-Ardakani,et al.  Optimization of mechanical properties of thermoplastic starch/clay nanocomposites , 2010 .

[10]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[11]  Faramarz Gordaninejad,et al.  Energy absorption capability of nanocomposites: A review , 2009 .

[12]  Stephen L. R. Ellison,et al.  Practical Statistics for the Analytical Scientist: A Bench Guide , 2009 .

[13]  Ali Fatemi,et al.  Tensile Creep and Deformation Modeling of Vinyl Ester Polymer and Its Nanocomposite , 2009 .

[14]  Xiaoming Zhang,et al.  Non-Structured Materials Science Data Sharing Based on Semantic Annotation , 2009, Data Sci. J..

[15]  A. H. Navarchian,et al.  Effect of process variables on mechanical properties of polyurethane/clay nanocomposites , 2009 .

[16]  M. Valentini,et al.  Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites , 2009 .

[17]  Jan Gou,et al.  Improved fire retardancy of thermoset composites modified with carbon nanofibers , 2009, Science and technology of advanced materials.

[18]  Uttandaraman Sundararaj,et al.  A review of vapor grown carbon nanofiber/polymer conductive composites , 2009 .

[19]  M. Khan,et al.  Thermal conductivity of polymer nanocomposites made with carbon nanofibers , 2008 .

[20]  Ali Fatemi,et al.  Influence of Carbon Nanofiber Content and Surface Treatment on Mechanical Properties of Vinyl Ester , 2008 .

[21]  Martín Tanco,et al.  Practical applications of design of experiments in the field of engineering: a bibliographical review , 2008, Qual. Reliab. Eng. Int..

[22]  Masahiro Arai,et al.  Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer , 2008 .

[23]  S. Hoa,et al.  The electronic transport properties and microstructure of carbon nanofiber/epoxy composites , 2008, 0802.4189.

[24]  Wen Shyang Chow,et al.  Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology , 2008 .

[25]  Kenneth L. Dudley,et al.  Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites , 2007 .

[26]  K. N. Pandey,et al.  Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites , 2007 .

[27]  Gary G. Tibbetts,et al.  A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites , 2007 .

[28]  R. Kane,et al.  Creep mitigation in composites using carbon nanotube additives , 2007 .

[29]  A. Fuentes,et al.  Dielectric analysis of VGCNF reinforced polyethylene composites , 2007 .

[30]  S. Jana,et al.  Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing , 2007 .

[31]  W. C. Tjiu,et al.  Effect of clay addition on the morphology and thermal behavior of polyamide 6 , 2007 .

[32]  Toshiaki Natsuki,et al.  Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites , 2007 .

[33]  N. Mohammadi,et al.  Taguchi-based optimization of adhesion of polyurethane to plasticized poly(vinyl chloride) in synthetic leather , 2007 .

[34]  Kim F. Ferris,et al.  Materials informatics : Fast track to new materials , 2007 .

[35]  K. Kanny,et al.  Characterization of Polypropylene Nanocomposite Structures , 2007 .

[36]  Brandon M. Vogel,et al.  Informatics Methods for Combinatorial Materials Science , 2006 .

[37]  I. Daniel,et al.  Mechanical and thermal behavior of clay/epoxy nanocomposites , 2006 .

[38]  A. Rasheed,et al.  Polymer‐nanofiber composites: Enhancing composite properties by nanofiber oxidation , 2006 .

[39]  Kuang-Ting Hsiao,et al.  Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance , 2006 .

[40]  Response surface characterization of the mechanical behavior of impact-damaged sandwich composites , 2006 .

[41]  Mehdi Hojjati,et al.  Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .

[42]  A. Elgafy,et al.  Effect of carbon nanofiber additives on thermal behavior of phase change materials , 2005 .

[43]  Jiango Li,et al.  Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs) , 2005 .

[44]  Roger L. King,et al.  Artificial Neural Networks and Three-Dimensional Digital Morphology: A Pilot Study , 2005, Folia Primatologica.

[45]  Mo Song,et al.  Preparation and characterization of polyurethane-carbon nanotube composites. , 2005, Soft matter.

[46]  H. Thomas Hahn,et al.  Dispersant optimization using design of experiments for SiC/vinyl ester nanocomposites , 2005 .

[47]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[48]  Karl I. Jacob,et al.  Experimental trends in polymer nanocomposites—a review , 2005 .

[49]  Li Shi,et al.  Thermal Conductivity Measurements of Nylon 11-Carbon Nanofiber Nanocomposites , 2005 .

[50]  L. Schadler,et al.  Glass-transition temperature behavior of alumina/PMMA nanocomposites , 2004 .

[51]  Chuck Zhang,et al.  Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites , 2004 .

[52]  Michael A. Sutton,et al.  Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites , 2004 .

[53]  Sofiane Guessasma,et al.  Microstructure of APS alumina–titania coatings analysed using artificial neural network , 2004 .

[54]  Qinggong Song A preliminary investigation on materials informatics , 2004 .

[55]  H. Toghiani,et al.  Nitric acid oxidation of vapor grown carbon nanofibers , 2004 .

[56]  Hartmut Presting,et al.  Future nanotechnology developments for automotive applications , 2003 .

[57]  Thomas S. Ellis,et al.  Thermal and mechanical properties of a polypropylene nanocomposite , 2003 .

[58]  Charles U. Pittman,et al.  Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites , 2002 .

[59]  Donald R Paul,et al.  Thermal expansion behavior of nylon 6 nanocomposites , 2002 .

[60]  Jem A. Rongong,et al.  Advances in damping materials and technology , 2001 .

[61]  J. Bicerano,et al.  Polymeric Nanocomposites for Automotive Applications , 2000 .

[62]  C. Bailer-Jones,et al.  Accelerated learning using Gaussian process models to predict static recrystallization in an Al-Mg alloy , 2000 .

[63]  G. Tibbetts,et al.  Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices , 1999 .

[64]  Alice E. Smith,et al.  Bias and variance of validation methods for function approximation neural networks under conditions of sparse data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[65]  Hui Li Synthesis, Characterization and Properties of Vinyl Ester Matrix Resins , 1998 .

[66]  K. Menard Dynamic Mechanical Analysis: A Practical Introduction , 1997 .

[67]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[68]  David G. Kleinbaum,et al.  Logistic Regression. A Self- Learning Text , 1994 .

[69]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[70]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[71]  R. Lyman Ott.,et al.  An introduction to statistical methods and data analysis , 1977 .

[72]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.